File size: 6,466 Bytes
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import annotations

import os
import random
from collections import defaultdict
from importlib.resources import files

import torch
from torch.nn.utils.rnn import pad_sequence

import jieba
from pypinyin import lazy_pinyin, Style


# seed everything


def seed_everything(seed=0):
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


# helpers


def exists(v):
    return v is not None


def default(v, d):
    return v if exists(v) else d


# tensor helpers


def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]:  # noqa: F722 F821
    if not exists(length):
        length = t.amax()

    seq = torch.arange(length, device=t.device)
    return seq[None, :] < t[:, None]


def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]):  # noqa: F722 F821
    max_seq_len = seq_len.max().item()
    seq = torch.arange(max_seq_len, device=start.device).long()
    start_mask = seq[None, :] >= start[:, None]
    end_mask = seq[None, :] < end[:, None]
    return start_mask & end_mask


def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]):  # noqa: F722 F821
    lengths = (frac_lengths * seq_len).long()
    max_start = seq_len - lengths

    rand = torch.rand_like(frac_lengths)
    start = (max_start * rand).long().clamp(min=0)
    end = start + lengths

    return mask_from_start_end_indices(seq_len, start, end)


def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]:  # noqa: F722
    if not exists(mask):
        return t.mean(dim=1)

    t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device))
    num = t.sum(dim=1)
    den = mask.float().sum(dim=1)

    return num / den.clamp(min=1.0)


# simple utf-8 tokenizer, since paper went character based
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]:  # noqa: F722
    list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text]  # ByT5 style
    text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
    return text


# char tokenizer, based on custom dataset's extracted .txt file
def list_str_to_idx(
    text: list[str] | list[list[str]],
    vocab_char_map: dict[str, int],  # {char: idx}
    padding_value=-1,
) -> int["b nt"]:  # noqa: F722
    list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text]  # pinyin or char style
    text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
    return text


# Get tokenizer


def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
    """
    tokenizer   - "pinyin" do g2p for only chinese characters, need .txt vocab_file
                - "char" for char-wise tokenizer, need .txt vocab_file
                - "byte" for utf-8 tokenizer
                - "custom" if you're directly passing in a path to the vocab.txt you want to use
    vocab_size  - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
                - if use "char", derived from unfiltered character & symbol counts of custom dataset
                - if use "byte", set to 256 (unicode byte range)
    """
    if tokenizer in ["pinyin", "char"]:
        tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt")
        with open(tokenizer_path, "r", encoding="utf-8") as f:
            vocab_char_map = {}
            for i, char in enumerate(f):
                vocab_char_map[char[:-1]] = i
        vocab_size = len(vocab_char_map)
        assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"

    elif tokenizer == "byte":
        vocab_char_map = None
        vocab_size = 256

    elif tokenizer == "custom":
        with open(dataset_name, "r", encoding="utf-8") as f:
            vocab_char_map = {}
            for i, char in enumerate(f):
                vocab_char_map[char[:-1]] = i
        vocab_size = len(vocab_char_map)

    return vocab_char_map, vocab_size


# convert char to pinyin


def convert_char_to_pinyin(text_list, polyphone=True):
    final_text_list = []
    god_knows_why_en_testset_contains_zh_quote = str.maketrans(
        {"β€œ": '"', "”": '"', "β€˜": "'", "’": "'"}
    )  # in case librispeech (orig no-pc) test-clean
    custom_trans = str.maketrans({";": ","})  # add custom trans here, to address oov
    for text in text_list:
        char_list = []
        text = text.translate(god_knows_why_en_testset_contains_zh_quote)
        text = text.translate(custom_trans)
        for seg in jieba.cut(text):
            seg_byte_len = len(bytes(seg, "UTF-8"))
            if seg_byte_len == len(seg):  # if pure alphabets and symbols
                if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
                    char_list.append(" ")
                char_list.extend(seg)
            elif polyphone and seg_byte_len == 3 * len(seg):  # if pure chinese characters
                seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
                for c in seg:
                    if c not in "γ€‚οΌŒγ€οΌ›οΌšοΌŸοΌγ€Šγ€‹γ€γ€‘β€”β€¦":
                        char_list.append(" ")
                    char_list.append(c)
            else:  # if mixed chinese characters, alphabets and symbols
                for c in seg:
                    if ord(c) < 256:
                        char_list.extend(c)
                    else:
                        if c not in "γ€‚οΌŒγ€οΌ›οΌšοΌŸοΌγ€Šγ€‹γ€γ€‘β€”β€¦":
                            char_list.append(" ")
                            char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
                        else:  # if is zh punc
                            char_list.append(c)
        final_text_list.append(char_list)

    return final_text_list


# filter func for dirty data with many repetitions


def repetition_found(text, length=2, tolerance=10):
    pattern_count = defaultdict(int)
    for i in range(len(text) - length + 1):
        pattern = text[i : i + length]
        pattern_count[pattern] += 1
    for pattern, count in pattern_count.items():
        if count > tolerance:
            return True
    return False