Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,118 Bytes
4dab15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# Training
## Prepare Dataset
Example data processing scripts for Emilia and Wenetspeech4TTS, and you may tailor your own one along with a Dataset class in `src/f5_tts/model/dataset.py`.
### 1. Datasets used for pretrained models
Download corresponding dataset first, and fill in the path in scripts.
```bash
# Prepare the Emilia dataset
python src/f5_tts/train/datasets/prepare_emilia.py
# Prepare the Wenetspeech4TTS dataset
python src/f5_tts/train/datasets/prepare_wenetspeech4tts.py
```
### 2. Create custom dataset with metadata.csv
Use guidance see [#57 here](https://github.com/SWivid/F5-TTS/discussions/57#discussioncomment-10959029).
```bash
python src/f5_tts/train/datasets/prepare_csv_wavs.py
```
## Training & Finetuning
Once your datasets are prepared, you can start the training process.
### 1. Training script used for pretrained model
```bash
# setup accelerate config, e.g. use multi-gpu ddp, fp16
# will be to: ~/.cache/huggingface/accelerate/default_config.yaml
accelerate config
accelerate launch src/f5_tts/train/train.py
```
### 2. Finetuning practice
Discussion board for Finetuning [#57](https://github.com/SWivid/F5-TTS/discussions/57).
Gradio UI training/finetuning with `src/f5_tts/train/finetune_gradio.py` see [#143](https://github.com/SWivid/F5-TTS/discussions/143).
### 3. Wandb Logging
The `wandb/` dir will be created under path you run training/finetuning scripts.
By default, the training script does NOT use logging (assuming you didn't manually log in using `wandb login`).
To turn on wandb logging, you can either:
1. Manually login with `wandb login`: Learn more [here](https://docs.wandb.ai/ref/cli/wandb-login)
2. Automatically login programmatically by setting an environment variable: Get an API KEY at https://wandb.ai/site/ and set the environment variable as follows:
On Mac & Linux:
```
export WANDB_API_KEY=<YOUR WANDB API KEY>
```
On Windows:
```
set WANDB_API_KEY=<YOUR WANDB API KEY>
```
Moreover, if you couldn't access Wandb and want to log metrics offline, you can the environment variable as follows:
```
export WANDB_MODE=offline
```
|