Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,208 Bytes
4dab15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
import torch
from torch import nn
from x_transformers.x_transformers import RotaryEmbedding
from f5_tts.model.modules import (
TimestepEmbedding,
ConvPositionEmbedding,
MMDiTBlock,
AdaLayerNormZero_Final,
precompute_freqs_cis,
get_pos_embed_indices,
)
# text embedding
class TextEmbedding(nn.Module):
def __init__(self, out_dim, text_num_embeds):
super().__init__()
self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token
self.precompute_max_pos = 1024
self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False)
def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]: # noqa: F722
text = text + 1
if drop_text:
text = torch.zeros_like(text)
text = self.text_embed(text)
# sinus pos emb
batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
batch_text_len = text.shape[1]
pos_idx = get_pos_embed_indices(batch_start, batch_text_len, max_pos=self.precompute_max_pos)
text_pos_embed = self.freqs_cis[pos_idx]
text = text + text_pos_embed
return text
# noised input & masked cond audio embedding
class AudioEmbedding(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.linear = nn.Linear(2 * in_dim, out_dim)
self.conv_pos_embed = ConvPositionEmbedding(out_dim)
def forward(self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False): # noqa: F722
if drop_audio_cond:
cond = torch.zeros_like(cond)
x = torch.cat((x, cond), dim=-1)
x = self.linear(x)
x = self.conv_pos_embed(x) + x
return x
# Transformer backbone using MM-DiT blocks
class MMDiT(nn.Module):
def __init__(
self,
*,
dim,
depth=8,
heads=8,
dim_head=64,
dropout=0.1,
ff_mult=4,
text_num_embeds=256,
mel_dim=100,
):
super().__init__()
self.time_embed = TimestepEmbedding(dim)
self.text_embed = TextEmbedding(dim, text_num_embeds)
self.audio_embed = AudioEmbedding(mel_dim, dim)
self.rotary_embed = RotaryEmbedding(dim_head)
self.dim = dim
self.depth = depth
self.transformer_blocks = nn.ModuleList(
[
MMDiTBlock(
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
ff_mult=ff_mult,
context_pre_only=i == depth - 1,
)
for i in range(depth)
]
)
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
self.proj_out = nn.Linear(dim, mel_dim)
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: bool["b n"] | None = None, # noqa: F722
):
batch = x.shape[0]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time)
c = self.text_embed(text, drop_text=drop_text)
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
seq_len = x.shape[1]
text_len = text.shape[1]
rope_audio = self.rotary_embed.forward_from_seq_len(seq_len)
rope_text = self.rotary_embed.forward_from_seq_len(text_len)
for block in self.transformer_blocks:
c, x = block(x, c, t, mask=mask, rope=rope_audio, c_rope=rope_text)
x = self.norm_out(x, t)
output = self.proj_out(x)
return output
|