File size: 7,414 Bytes
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Emilia Dataset: https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07
# if use updated new version, i.e. WebDataset, feel free to modify / draft your own script

# generate audio text map for Emilia ZH & EN
# evaluate for vocab size

import os
import sys

sys.path.append(os.getcwd())

import json
from concurrent.futures import ProcessPoolExecutor
from importlib.resources import files
from pathlib import Path
from tqdm import tqdm

from datasets.arrow_writer import ArrowWriter

from f5_tts.model.utils import (
    repetition_found,
    convert_char_to_pinyin,
)


out_zh = {
    "ZH_B00041_S06226",
    "ZH_B00042_S09204",
    "ZH_B00065_S09430",
    "ZH_B00065_S09431",
    "ZH_B00066_S09327",
    "ZH_B00066_S09328",
}
zh_filters = ["い", "て"]
# seems synthesized audios, or heavily code-switched
out_en = {
    "EN_B00013_S00913",
    "EN_B00042_S00120",
    "EN_B00055_S04111",
    "EN_B00061_S00693",
    "EN_B00061_S01494",
    "EN_B00061_S03375",
    "EN_B00059_S00092",
    "EN_B00111_S04300",
    "EN_B00100_S03759",
    "EN_B00087_S03811",
    "EN_B00059_S00950",
    "EN_B00089_S00946",
    "EN_B00078_S05127",
    "EN_B00070_S04089",
    "EN_B00074_S09659",
    "EN_B00061_S06983",
    "EN_B00061_S07060",
    "EN_B00059_S08397",
    "EN_B00082_S06192",
    "EN_B00091_S01238",
    "EN_B00089_S07349",
    "EN_B00070_S04343",
    "EN_B00061_S02400",
    "EN_B00076_S01262",
    "EN_B00068_S06467",
    "EN_B00076_S02943",
    "EN_B00064_S05954",
    "EN_B00061_S05386",
    "EN_B00066_S06544",
    "EN_B00076_S06944",
    "EN_B00072_S08620",
    "EN_B00076_S07135",
    "EN_B00076_S09127",
    "EN_B00065_S00497",
    "EN_B00059_S06227",
    "EN_B00063_S02859",
    "EN_B00075_S01547",
    "EN_B00061_S08286",
    "EN_B00079_S02901",
    "EN_B00092_S03643",
    "EN_B00096_S08653",
    "EN_B00063_S04297",
    "EN_B00063_S04614",
    "EN_B00079_S04698",
    "EN_B00104_S01666",
    "EN_B00061_S09504",
    "EN_B00061_S09694",
    "EN_B00065_S05444",
    "EN_B00063_S06860",
    "EN_B00065_S05725",
    "EN_B00069_S07628",
    "EN_B00083_S03875",
    "EN_B00071_S07665",
    "EN_B00071_S07665",
    "EN_B00062_S04187",
    "EN_B00065_S09873",
    "EN_B00065_S09922",
    "EN_B00084_S02463",
    "EN_B00067_S05066",
    "EN_B00106_S08060",
    "EN_B00073_S06399",
    "EN_B00073_S09236",
    "EN_B00087_S00432",
    "EN_B00085_S05618",
    "EN_B00064_S01262",
    "EN_B00072_S01739",
    "EN_B00059_S03913",
    "EN_B00069_S04036",
    "EN_B00067_S05623",
    "EN_B00060_S05389",
    "EN_B00060_S07290",
    "EN_B00062_S08995",
}
en_filters = ["ا", "い", "て"]


def deal_with_audio_dir(audio_dir):
    audio_jsonl = audio_dir.with_suffix(".jsonl")
    sub_result, durations = [], []
    vocab_set = set()
    bad_case_zh = 0
    bad_case_en = 0
    with open(audio_jsonl, "r") as f:
        lines = f.readlines()
        for line in tqdm(lines, desc=f"{audio_jsonl.stem}"):
            obj = json.loads(line)
            text = obj["text"]
            if obj["language"] == "zh":
                if obj["wav"].split("/")[1] in out_zh or any(f in text for f in zh_filters) or repetition_found(text):
                    bad_case_zh += 1
                    continue
                else:
                    text = text.translate(
                        str.maketrans({",": ",", "!": "!", "?": "?"})
                    )  # not "。" cuz much code-switched
            if obj["language"] == "en":
                if (
                    obj["wav"].split("/")[1] in out_en
                    or any(f in text for f in en_filters)
                    or repetition_found(text, length=4)
                ):
                    bad_case_en += 1
                    continue
            if tokenizer == "pinyin":
                text = convert_char_to_pinyin([text], polyphone=polyphone)[0]
            duration = obj["duration"]
            sub_result.append({"audio_path": str(audio_dir.parent / obj["wav"]), "text": text, "duration": duration})
            durations.append(duration)
            vocab_set.update(list(text))
    return sub_result, durations, vocab_set, bad_case_zh, bad_case_en


def main():
    assert tokenizer in ["pinyin", "char"]
    result = []
    duration_list = []
    text_vocab_set = set()
    total_bad_case_zh = 0
    total_bad_case_en = 0

    # process raw data
    executor = ProcessPoolExecutor(max_workers=max_workers)
    futures = []
    for lang in langs:
        dataset_path = Path(os.path.join(dataset_dir, lang))
        [
            futures.append(executor.submit(deal_with_audio_dir, audio_dir))
            for audio_dir in dataset_path.iterdir()
            if audio_dir.is_dir()
        ]
    for futures in tqdm(futures, total=len(futures)):
        sub_result, durations, vocab_set, bad_case_zh, bad_case_en = futures.result()
        result.extend(sub_result)
        duration_list.extend(durations)
        text_vocab_set.update(vocab_set)
        total_bad_case_zh += bad_case_zh
        total_bad_case_en += bad_case_en
    executor.shutdown()

    # save preprocessed dataset to disk
    if not os.path.exists(f"{save_dir}"):
        os.makedirs(f"{save_dir}")
    print(f"\nSaving to {save_dir} ...")

    # dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list})  # oom
    # dataset.save_to_disk(f"{save_dir}/raw", max_shard_size="2GB")
    with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
        for line in tqdm(result, desc="Writing to raw.arrow ..."):
            writer.write(line)

    # dup a json separately saving duration in case for DynamicBatchSampler ease
    with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
        json.dump({"duration": duration_list}, f, ensure_ascii=False)

    # vocab map, i.e. tokenizer
    # add alphabets and symbols (optional, if plan to ft on de/fr etc.)
    # if tokenizer == "pinyin":
    #     text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)])
    with open(f"{save_dir}/vocab.txt", "w") as f:
        for vocab in sorted(text_vocab_set):
            f.write(vocab + "\n")

    print(f"\nFor {dataset_name}, sample count: {len(result)}")
    print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
    print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
    if "ZH" in langs:
        print(f"Bad zh transcription case: {total_bad_case_zh}")
    if "EN" in langs:
        print(f"Bad en transcription case: {total_bad_case_en}\n")


if __name__ == "__main__":
    max_workers = 32

    tokenizer = "pinyin"  # "pinyin" | "char"
    polyphone = True

    langs = ["ZH", "EN"]
    dataset_dir = "<SOME_PATH>/Emilia_Dataset/raw"
    dataset_name = f"Emilia_{'_'.join(langs)}_{tokenizer}"
    save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
    print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")

    main()

    # Emilia               ZH & EN
    # samples count       37837916   (after removal)
    # pinyin vocab size       2543   (polyphone)
    # total duration      95281.87   (hours)
    # bad zh asr cnt        230435   (samples)
    # bad eh asr cnt         37217   (samples)

    # vocab size may be slightly different due to jieba tokenizer and pypinyin (e.g. way of polyphoneme)
    # please be careful if using pretrained model, make sure the vocab.txt is same