File size: 5,350 Bytes
1646c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""

from __future__ import annotations

import torch
from torch import nn
import torch.nn.functional as F

from einops import repeat

from x_transformers.x_transformers import RotaryEmbedding

from model.modules import (
    TimestepEmbedding,
    ConvNeXtV2Block,
    ConvPositionEmbedding,
    DiTBlock,
    AdaLayerNormZero_Final,
    precompute_freqs_cis, get_pos_embed_indices,
)


# Text embedding

class TextEmbedding(nn.Module):
    def __init__(self, text_num_embeds, text_dim, conv_layers = 0, conv_mult = 2):
        super().__init__()
        self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim)  # use 0 as filler token

        if conv_layers > 0:
            self.extra_modeling = True
            self.precompute_max_pos = 4096  # ~44s of 24khz audio
            self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
            self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)])
        else:
            self.extra_modeling = False

    def forward(self, text: int['b nt'], seq_len, drop_text = False):
        batch, text_len = text.shape[0], text.shape[1]
        text = text + 1  # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
        text = text[:, :seq_len]  # curtail if character tokens are more than the mel spec tokens
        text = F.pad(text, (0, seq_len - text_len), value = 0)

        if drop_text:  # cfg for text
            text = torch.zeros_like(text)

        text = self.text_embed(text) # b n -> b n d

        # possible extra modeling
        if self.extra_modeling:
            # sinus pos emb
            batch_start = torch.zeros((batch,), dtype=torch.long)
            pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
            text_pos_embed = self.freqs_cis[pos_idx]
            text = text + text_pos_embed

            # convnextv2 blocks
            text = self.text_blocks(text)

        return text


# noised input audio and context mixing embedding

class InputEmbedding(nn.Module):
    def __init__(self, mel_dim, text_dim, out_dim):
        super().__init__()
        self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
        self.conv_pos_embed = ConvPositionEmbedding(dim = out_dim)

    def forward(self, x: float['b n d'], cond: float['b n d'], text_embed: float['b n d'], drop_audio_cond = False):
        if drop_audio_cond:  # cfg for cond audio
            cond = torch.zeros_like(cond)

        x = self.proj(torch.cat((x, cond, text_embed), dim = -1))
        x = self.conv_pos_embed(x) + x
        return x
    

# Transformer backbone using DiT blocks

class DiT(nn.Module):
    def __init__(self, *, 
                 dim, depth = 8, heads = 8, dim_head = 64, dropout = 0.1, ff_mult = 4,
                 mel_dim = 100, text_num_embeds = 256, text_dim = None, conv_layers = 0,
                 long_skip_connection = False,
    ):
        super().__init__()

        self.time_embed = TimestepEmbedding(dim)
        if text_dim is None:
            text_dim = mel_dim
        self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers = conv_layers)
        self.input_embed = InputEmbedding(mel_dim, text_dim, dim)

        self.rotary_embed = RotaryEmbedding(dim_head)

        self.dim = dim
        self.depth = depth
        
        self.transformer_blocks = nn.ModuleList(
            [
                DiTBlock(
                    dim = dim,
                    heads = heads,
                    dim_head = dim_head,
                    ff_mult = ff_mult,
                    dropout = dropout
                )
                for _ in range(depth)
            ]
        )
        self.long_skip_connection = nn.Linear(dim * 2, dim, bias = False) if long_skip_connection else None
        
        self.norm_out = AdaLayerNormZero_Final(dim)  # final modulation
        self.proj_out = nn.Linear(dim, mel_dim)

    def forward(
        self,
        x: float['b n d'],     # nosied input audio
        cond: float['b n d'],  # masked cond audio
        text: int['b nt'],     # text
        time: float['b'] | float[''],  # time step
        drop_audio_cond,  # cfg for cond audio
        drop_text,        # cfg for text
        mask: bool['b n'] | None = None,
    ):
        batch, seq_len = x.shape[0], x.shape[1]
        if time.ndim == 0:
            time = repeat(time, ' -> b', b = batch)
        
        # t: conditioning time, c: context (text + masked cond audio), x: noised input audio
        t = self.time_embed(time)
        text_embed = self.text_embed(text, seq_len, drop_text = drop_text)
        x = self.input_embed(x, cond, text_embed, drop_audio_cond = drop_audio_cond)
        
        rope = self.rotary_embed.forward_from_seq_len(seq_len)

        if self.long_skip_connection is not None:
            residual = x

        for block in self.transformer_blocks:
            x = block(x, t, mask = mask, rope = rope)

        if self.long_skip_connection is not None:
            x = self.long_skip_connection(torch.cat((x, residual), dim = -1))

        x = self.norm_out(x, t)
        output = self.proj_out(x)

        return output