File size: 31,505 Bytes
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4446bbe
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4446bbe
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4446bbe
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4446bbe
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4446bbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
import os
import re
import torch
import torchaudio
import gradio as gr
import numpy as np
import tempfile
from einops import rearrange
from vocos import Vocos
from pydub import AudioSegment, silence
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (
    load_checkpoint,
    get_tokenizer,
    convert_char_to_pinyin,
    save_spectrogram,
)
from transformers import pipeline
import librosa
import click
import soundfile as sf

try:
    import spaces
    USING_SPACES = True
except ImportError:
    USING_SPACES = False

def gpu_decorator(func):
    if USING_SPACES:
        return spaces.GPU(func)
    else:
        return func



SPLIT_WORDS = [
    "but", "however", "nevertheless", "yet", "still",
    "therefore", "thus", "hence", "consequently",
    "moreover", "furthermore", "additionally",
    "meanwhile", "alternatively", "otherwise",
    "namely", "specifically", "for example", "such as",
    "in fact", "indeed", "notably",
    "in contrast", "on the other hand", "conversely",
    "in conclusion", "to summarize", "finally"
]

device = (
    "cuda"
    if torch.cuda.is_available()
    else "mps" if torch.backends.mps.is_available() else "cpu"
)

print(f"Using {device} device")

pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-large-v3-turbo",
    torch_dtype=torch.float16,
    device=device,
)
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")

# --------------------- Settings -------------------- #

target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32  # 16, 32
cfg_strength = 2.0
ode_method = "euler"
sway_sampling_coef = -1.0
speed = 1.0
# fix_duration = 27  # None or float (duration in seconds)
fix_duration = None


def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
    ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
    # ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt"  # .pt | .safetensors
    vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
    model = CFM(
        transformer=model_cls(
            **model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
        ),
        mel_spec_kwargs=dict(
            target_sample_rate=target_sample_rate,
            n_mel_channels=n_mel_channels,
            hop_length=hop_length,
        ),
        odeint_kwargs=dict(
            method=ode_method,
        ),
        vocab_char_map=vocab_char_map,
    ).to(device)

    model = load_checkpoint(model, ckpt_path, device, use_ema = True)

    return model


# load models
F5TTS_model_cfg = dict(
    dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)

F5TTS_ema_model = load_model(
    "F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000
)
E2TTS_ema_model = load_model(
    "E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000
)

def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
    if len(text.encode('utf-8')) <= max_chars:
        return [text]
    if text[-1] not in ['。', '.', '!', '!', '?', '?']:
        text += '.'
        
    sentences = re.split('([。.!?!?])', text)
    sentences = [''.join(i) for i in zip(sentences[0::2], sentences[1::2])]
    
    batches = []
    current_batch = ""
    
    def split_by_words(text):
        words = text.split()
        current_word_part = ""
        word_batches = []
        for word in words:
            if len(current_word_part.encode('utf-8')) + len(word.encode('utf-8')) + 1 <= max_chars:
                current_word_part += word + ' '
            else:
                if current_word_part:
                    # Try to find a suitable split word
                    for split_word in split_words:
                        split_index = current_word_part.rfind(' ' + split_word + ' ')
                        if split_index != -1:
                            word_batches.append(current_word_part[:split_index].strip())
                            current_word_part = current_word_part[split_index:].strip() + ' '
                            break
                    else:
                        # If no suitable split word found, just append the current part
                        word_batches.append(current_word_part.strip())
                        current_word_part = ""
                current_word_part += word + ' '
        if current_word_part:
            word_batches.append(current_word_part.strip())
        return word_batches

    for sentence in sentences:
        if len(current_batch.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
            current_batch += sentence
        else:
            # If adding this sentence would exceed the limit
            if current_batch:
                batches.append(current_batch)
                current_batch = ""
            
            # If the sentence itself is longer than max_chars, split it
            if len(sentence.encode('utf-8')) > max_chars:
                # First, try to split by colon
                colon_parts = sentence.split(':')
                if len(colon_parts) > 1:
                    for part in colon_parts:
                        if len(part.encode('utf-8')) <= max_chars:
                            batches.append(part)
                        else:
                            # If colon part is still too long, split by comma
                            comma_parts = re.split('[,,]', part)
                            if len(comma_parts) > 1:
                                current_comma_part = ""
                                for comma_part in comma_parts:
                                    if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
                                        current_comma_part += comma_part + ','
                                    else:
                                        if current_comma_part:
                                            batches.append(current_comma_part.rstrip(','))
                                        current_comma_part = comma_part + ','
                                if current_comma_part:
                                    batches.append(current_comma_part.rstrip(','))
                            else:
                                # If no comma, split by words
                                batches.extend(split_by_words(part))
                else:
                    # If no colon, split by comma
                    comma_parts = re.split('[,,]', sentence)
                    if len(comma_parts) > 1:
                        current_comma_part = ""
                        for comma_part in comma_parts:
                            if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
                                current_comma_part += comma_part + ','
                            else:
                                if current_comma_part:
                                    batches.append(current_comma_part.rstrip(','))
                                current_comma_part = comma_part + ','
                        if current_comma_part:
                            batches.append(current_comma_part.rstrip(','))
                    else:
                        # If no comma, split by words
                        batches.extend(split_by_words(sentence))
            else:
                current_batch = sentence
    
    if current_batch:
        batches.append(current_batch)
    
    return batches

@spaces.GPU
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence, progress=gr.Progress()):
    if exp_name == "F5-TTS":
        ema_model = F5TTS_ema_model
    elif exp_name == "E2-TTS":
        ema_model = E2TTS_ema_model

    audio, sr = ref_audio
    if audio.shape[0] > 1:
        audio = torch.mean(audio, dim=0, keepdim=True)

    rms = torch.sqrt(torch.mean(torch.square(audio)))
    if rms < target_rms:
        audio = audio * target_rms / rms
    if sr != target_sample_rate:
        resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
        audio = resampler(audio)
    audio = audio.to(device)

    generated_waves = []
    spectrograms = []

    for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
        # Prepare the text
        if len(ref_text[-1].encode('utf-8')) == 1:
            ref_text = ref_text + " "
        text_list = [ref_text + gen_text]
        final_text_list = convert_char_to_pinyin(text_list)

        # Calculate duration
        ref_audio_len = audio.shape[-1] // hop_length
        zh_pause_punc = r"。,、;:?!"
        ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
        gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
        duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)

        # inference
        with torch.inference_mode():
            generated, _ = ema_model.sample(
                cond=audio,
                text=final_text_list,
                duration=duration,
                steps=nfe_step,
                cfg_strength=cfg_strength,
                sway_sampling_coef=sway_sampling_coef,
            )

        generated = generated[:, ref_audio_len:, :]
        generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
        generated_wave = vocos.decode(generated_mel_spec.cpu())
        if rms < target_rms:
            generated_wave = generated_wave * rms / target_rms

        # wav -> numpy
        generated_wave = generated_wave.squeeze().cpu().numpy()
        
        generated_waves.append(generated_wave)
        spectrograms.append(generated_mel_spec[0].cpu().numpy())

    # Combine all generated waves
    final_wave = np.concatenate(generated_waves)

    # Remove silence
    if remove_silence:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
            sf.write(f.name, final_wave, target_sample_rate)
            aseg = AudioSegment.from_file(f.name)
            non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
            non_silent_wave = AudioSegment.silent(duration=0)
            for non_silent_seg in non_silent_segs:
                non_silent_wave += non_silent_seg
            aseg = non_silent_wave
            aseg.export(f.name, format="wav")
            final_wave, _ = torchaudio.load(f.name)
        final_wave = final_wave.squeeze().cpu().numpy()

    # Create a combined spectrogram
    combined_spectrogram = np.concatenate(spectrograms, axis=1)
    
    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
        spectrogram_path = tmp_spectrogram.name
        save_spectrogram(combined_spectrogram, spectrogram_path)

    return (target_sample_rate, final_wave), spectrogram_path

@spaces.GPU
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, custom_split_words=''):
    if not custom_split_words.strip():
        custom_words = [word.strip() for word in custom_split_words.split(',')]
        global SPLIT_WORDS
        SPLIT_WORDS = custom_words

    print(gen_text)

    gr.Info("Converting audio...")
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        aseg = AudioSegment.from_file(ref_audio_orig)

        non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
        non_silent_wave = AudioSegment.silent(duration=0)
        for non_silent_seg in non_silent_segs:
            non_silent_wave += non_silent_seg
        aseg = non_silent_wave

        audio_duration = len(aseg)
        if audio_duration > 15000:
            gr.Warning("Audio is over 15s, clipping to only first 15s.")
            aseg = aseg[:15000]
        aseg.export(f.name, format="wav")
        ref_audio = f.name

    if not ref_text.strip():
        gr.Info("No reference text provided, transcribing reference audio...")
        ref_text = pipe(
            ref_audio,
            chunk_length_s=30,
            batch_size=128,
            generate_kwargs={"task": "transcribe"},
            return_timestamps=False,
        )["text"].strip()
        gr.Info("Finished transcription")
    else:
        gr.Info("Using custom reference text...")

    # Split the input text into batches
    audio, sr = torchaudio.load(ref_audio)
    max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (30 - audio.shape[-1] / sr))
    gen_text_batches = split_text_into_batches(gen_text, max_chars=max_chars)
    print('ref_text', ref_text)
    for i, gen_text in enumerate(gen_text_batches):
        print(f'gen_text {i}', gen_text)
    
    gr.Info(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches")
    return infer_batch((audio, sr), ref_text, gen_text_batches, exp_name, remove_silence)

@spaces.GPU
def generate_podcast(script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, exp_name, remove_silence):
    # Split the script into speaker blocks
    speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE)
    speaker_blocks = speaker_pattern.split(script)[1:]  # Skip the first empty element
    
    generated_audio_segments = []
    
    for i in range(0, len(speaker_blocks), 2):
        speaker = speaker_blocks[i]
        text = speaker_blocks[i+1].strip()
        
        # Determine which speaker is talking
        if speaker == speaker1_name:
            ref_audio = ref_audio1
            ref_text = ref_text1
        elif speaker == speaker2_name:
            ref_audio = ref_audio2
            ref_text = ref_text2
        else:
            continue  # Skip if the speaker is neither speaker1 nor speaker2
        
        # Generate audio for this block
        audio, _ = infer(ref_audio, ref_text, text, exp_name, remove_silence)
        
        # Convert the generated audio to a numpy array
        sr, audio_data = audio
        
        # Save the audio data as a WAV file
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
            sf.write(temp_file.name, audio_data, sr)
            audio_segment = AudioSegment.from_wav(temp_file.name)
        
        generated_audio_segments.append(audio_segment)
        
        # Add a short pause between speakers
        pause = AudioSegment.silent(duration=500)  # 500ms pause
        generated_audio_segments.append(pause)
    
    # Concatenate all audio segments
    final_podcast = sum(generated_audio_segments)
    
    # Export the final podcast
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
        podcast_path = temp_file.name
        final_podcast.export(podcast_path, format="wav")
    
    return podcast_path

def parse_speechtypes_text(gen_text):
    # Pattern to find (Emotion)
    pattern = r'\((.*?)\)'

    # Split the text by the pattern
    tokens = re.split(pattern, gen_text)

    segments = []

    current_emotion = 'Regular'

    for i in range(len(tokens)):
        if i % 2 == 0:
            # This is text
            text = tokens[i].strip()
            if text:
                segments.append({'emotion': current_emotion, 'text': text})
        else:
            # This is emotion
            emotion = tokens[i].strip()
            current_emotion = emotion

    return segments

def update_speed(new_speed):
    global speed
    speed = new_speed
    return f"Speed set to: {speed}"

with gr.Blocks() as app_credits:
    gr.Markdown("""
# Credits

* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [RootingInLoad](https://github.com/RootingInLoad) for the podcast generation
""")
with gr.Blocks() as app_tts:
    gr.Markdown("# Batched TTS")
    ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
    gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
    model_choice = gr.Radio(
        choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
    )
    generate_btn = gr.Button("Synthesize", variant="primary")
    with gr.Accordion("Advanced Settings", open=False):
        ref_text_input = gr.Textbox(
            label="Reference Text",
            info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
            lines=2,
        )
        remove_silence = gr.Checkbox(
            label="Remove Silences",
            info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
            value=True,
        )
        split_words_input = gr.Textbox(
            label="Custom Split Words",
            info="Enter custom words to split on, separated by commas. Leave blank to use default list.",
            lines=2,
        )
        speed_slider = gr.Slider(
            label="Speed",
            minimum=0.3,
            maximum=2.0,
            value=speed,
            step=0.1,
            info="Adjust the speed of the audio.",
        )
    speed_slider.change(update_speed, inputs=speed_slider)

    audio_output = gr.Audio(label="Synthesized Audio")
    spectrogram_output = gr.Image(label="Spectrogram")

    generate_btn.click(
        infer,
        inputs=[
            ref_audio_input,
            ref_text_input,
            gen_text_input,
            model_choice,
            remove_silence,
            split_words_input,
        ],
        outputs=[audio_output, spectrogram_output],
    )
    
with gr.Blocks() as app_podcast:
    gr.Markdown("# Podcast Generation")
    speaker1_name = gr.Textbox(label="Speaker 1 Name")
    ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath")
    ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2)
    
    speaker2_name = gr.Textbox(label="Speaker 2 Name")
    ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath")
    ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2)
    
    script_input = gr.Textbox(label="Podcast Script", lines=10, 
                                placeholder="Enter the script with speaker names at the start of each block, e.g.:\nSean: How did you start studying...\n\nMeghan: I came to my interest in technology...\nIt was a long journey...\n\nSean: That's fascinating. Can you elaborate...")
    
    podcast_model_choice = gr.Radio(
        choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
    )
    podcast_remove_silence = gr.Checkbox(
        label="Remove Silences",
        value=True,
    )
    generate_podcast_btn = gr.Button("Generate Podcast", variant="primary")
    podcast_output = gr.Audio(label="Generated Podcast")

    def podcast_generation(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence):
        return generate_podcast(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence)

    generate_podcast_btn.click(
        podcast_generation,
        inputs=[
            script_input,
            speaker1_name,
            ref_audio_input1,
            ref_text_input1,
            speaker2_name,
            ref_audio_input2,
            ref_text_input2,
            podcast_model_choice,
            podcast_remove_silence,
        ],
        outputs=podcast_output,
    )

def parse_emotional_text(gen_text):
    # Pattern to find (Emotion)
    pattern = r'\((.*?)\)'

    # Split the text by the pattern
    tokens = re.split(pattern, gen_text)

    segments = []

    current_emotion = 'Regular'

    for i in range(len(tokens)):
        if i % 2 == 0:
            # This is text
            text = tokens[i].strip()
            if text:
                segments.append({'emotion': current_emotion, 'text': text})
        else:
            # This is emotion
            emotion = tokens[i].strip()
            current_emotion = emotion

    return segments

with gr.Blocks() as app_emotional:
    # New section for emotional generation
    gr.Markdown(
        """
    # Multiple Speech-Type Generation

    This section allows you to upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the "Add Speech Type" button. Enter your text in the format shown below, and the system will generate speech using the appropriate emotions. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.

    **Example Input:**

    (Regular) Hello, I'd like to order a sandwich please. (Surprised) What do you mean you're out of bread? (Sad) I really wanted a sandwich though... (Angry) You know what, darn you and your little shop, you suck! (Whisper) I'll just go back home and cry now. (Shouting) Why me?!
    """
    )

    gr.Markdown("Upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button.")

    # Regular speech type (mandatory)
    with gr.Row():
        regular_name = gr.Textbox(value='Regular', label='Speech Type Name', interactive=False)
        regular_audio = gr.Audio(label='Regular Reference Audio', type='filepath')
        regular_ref_text = gr.Textbox(label='Reference Text (Regular)', lines=2)

    # Additional speech types (up to 9 more)
    max_speech_types = 10
    speech_type_names = []
    speech_type_audios = []
    speech_type_ref_texts = []
    speech_type_delete_btns = []

    for i in range(max_speech_types - 1):
        with gr.Row():
            name_input = gr.Textbox(label='Speech Type Name', visible=False)
            audio_input = gr.Audio(label='Reference Audio', type='filepath', visible=False)
            ref_text_input = gr.Textbox(label='Reference Text', lines=2, visible=False)
            delete_btn = gr.Button("Delete", variant="secondary", visible=False)
        speech_type_names.append(name_input)
        speech_type_audios.append(audio_input)
        speech_type_ref_texts.append(ref_text_input)
        speech_type_delete_btns.append(delete_btn)

    # Button to add speech type
    add_speech_type_btn = gr.Button("Add Speech Type")

    # Keep track of current number of speech types
    speech_type_count = gr.State(value=0)

    # Function to add a speech type
    def add_speech_type_fn(speech_type_count):
        if speech_type_count < max_speech_types - 1:
            speech_type_count += 1
            # Prepare updates for the components
            name_updates = []
            audio_updates = []
            ref_text_updates = []
            delete_btn_updates = []
            for i in range(max_speech_types - 1):
                if i < speech_type_count:
                    name_updates.append(gr.update(visible=True))
                    audio_updates.append(gr.update(visible=True))
                    ref_text_updates.append(gr.update(visible=True))
                    delete_btn_updates.append(gr.update(visible=True))
                else:
                    name_updates.append(gr.update())
                    audio_updates.append(gr.update())
                    ref_text_updates.append(gr.update())
                    delete_btn_updates.append(gr.update())
        else:
            # Optionally, show a warning
            # gr.Warning("Maximum number of speech types reached.")
            name_updates = [gr.update() for _ in range(max_speech_types - 1)]
            audio_updates = [gr.update() for _ in range(max_speech_types - 1)]
            ref_text_updates = [gr.update() for _ in range(max_speech_types - 1)]
            delete_btn_updates = [gr.update() for _ in range(max_speech_types - 1)]
        return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates

    add_speech_type_btn.click(
        add_speech_type_fn,
        inputs=speech_type_count,
        outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
    )

    # Function to delete a speech type
    def make_delete_speech_type_fn(index):
        def delete_speech_type_fn(speech_type_count):
            # Prepare updates
            name_updates = []
            audio_updates = []
            ref_text_updates = []
            delete_btn_updates = []

            for i in range(max_speech_types - 1):
                if i == index:
                    name_updates.append(gr.update(visible=False, value=''))
                    audio_updates.append(gr.update(visible=False, value=None))
                    ref_text_updates.append(gr.update(visible=False, value=''))
                    delete_btn_updates.append(gr.update(visible=False))
                else:
                    name_updates.append(gr.update())
                    audio_updates.append(gr.update())
                    ref_text_updates.append(gr.update())
                    delete_btn_updates.append(gr.update())

            speech_type_count = max(0, speech_type_count - 1)

            return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates

        return delete_speech_type_fn

    for i, delete_btn in enumerate(speech_type_delete_btns):
        delete_fn = make_delete_speech_type_fn(i)
        delete_btn.click(
            delete_fn,
            inputs=speech_type_count,
            outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
        )

    # Text input for the prompt
    gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10)

    # Model choice
    model_choice_emotional = gr.Radio(
        choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
    )

    with gr.Accordion("Advanced Settings", open=False):
        remove_silence_emotional = gr.Checkbox(
            label="Remove Silences",
            value=True,
        )

    # Generate button
    generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary")

    # Output audio
    audio_output_emotional = gr.Audio(label="Synthesized Audio")
    
    @spaces.GPU
    def generate_emotional_speech(
        regular_audio,
        regular_ref_text,
        gen_text,
        *args,
    ):
        num_additional_speech_types = max_speech_types - 1
        speech_type_names_list = args[:num_additional_speech_types]
        speech_type_audios_list = args[num_additional_speech_types:2 * num_additional_speech_types]
        speech_type_ref_texts_list = args[2 * num_additional_speech_types:3 * num_additional_speech_types]
        model_choice = args[3 * num_additional_speech_types]
        remove_silence = args[3 * num_additional_speech_types + 1]

        # Collect the speech types and their audios into a dict
        speech_types = {'Regular': {'audio': regular_audio, 'ref_text': regular_ref_text}}

        for name_input, audio_input, ref_text_input in zip(speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list):
            if name_input and audio_input:
                speech_types[name_input] = {'audio': audio_input, 'ref_text': ref_text_input}

        # Parse the gen_text into segments
        segments = parse_speechtypes_text(gen_text)

        # For each segment, generate speech
        generated_audio_segments = []
        current_emotion = 'Regular'

        for segment in segments:
            emotion = segment['emotion']
            text = segment['text']

            if emotion in speech_types:
                current_emotion = emotion
            else:
                # If emotion not available, default to Regular
                current_emotion = 'Regular'

            ref_audio = speech_types[current_emotion]['audio']
            ref_text = speech_types[current_emotion].get('ref_text', '')

            # Generate speech for this segment
            audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence, "")
            sr, audio_data = audio

            generated_audio_segments.append(audio_data)

        # Concatenate all audio segments
        if generated_audio_segments:
            final_audio_data = np.concatenate(generated_audio_segments)
            return (sr, final_audio_data)
        else:
            gr.Warning("No audio generated.")
            return None

    generate_emotional_btn.click(
        generate_emotional_speech,
        inputs=[
            regular_audio,
            regular_ref_text,
            gen_text_input_emotional,
        ] + speech_type_names + speech_type_audios + speech_type_ref_texts + [
            model_choice_emotional,
            remove_silence_emotional,
        ],
        outputs=audio_output_emotional,
    )

    # Validation function to disable Generate button if speech types are missing
    def validate_speech_types(
        gen_text,
        regular_name,
        *args
    ):
        num_additional_speech_types = max_speech_types - 1
        speech_type_names_list = args[:num_additional_speech_types]

        # Collect the speech types names
        speech_types_available = set()
        if regular_name:
            speech_types_available.add(regular_name)
        for name_input in speech_type_names_list:
            if name_input:
                speech_types_available.add(name_input)

        # Parse the gen_text to get the speech types used
        segments = parse_emotional_text(gen_text)
        speech_types_in_text = set(segment['emotion'] for segment in segments)

        # Check if all speech types in text are available
        missing_speech_types = speech_types_in_text - speech_types_available

        if missing_speech_types:
            # Disable the generate button
            return gr.update(interactive=False)
        else:
            # Enable the generate button
            return gr.update(interactive=True)

    gen_text_input_emotional.change(
        validate_speech_types,
        inputs=[gen_text_input_emotional, regular_name] + speech_type_names,
        outputs=generate_emotional_btn
    )
with gr.Blocks() as app:
    gr.Markdown(
        """
# E2/F5 TTS

This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:

* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)

The checkpoints support English and Chinese.

If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.

**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
"""
    )
    gr.TabbedInterface([app_tts, app_podcast, app_emotional, app_credits], ["TTS", "Podcast", "Multi-Style", "Credits"])

app.queue().launch()