File size: 5,441 Bytes
a674527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import sys, os
sys.path.append(os.getcwd())

from pathlib import Path
import json
import shutil
import argparse

import csv
import torchaudio
from tqdm import tqdm
from datasets.arrow_writer import ArrowWriter

from model.utils import (
    convert_char_to_pinyin,
)

PRETRAINED_VOCAB_PATH = Path(__file__).parent.parent / "data/Emilia_ZH_EN_pinyin/vocab.txt"

def is_csv_wavs_format(input_dataset_dir):
    fpath = Path(input_dataset_dir)
    metadata = fpath / "metadata.csv"
    wavs = fpath / 'wavs'
    return metadata.exists() and metadata.is_file() and wavs.exists() and wavs.is_dir()


def prepare_csv_wavs_dir(input_dir):
    assert is_csv_wavs_format(input_dir), f"not csv_wavs format: {input_dir}"
    input_dir = Path(input_dir)
    metadata_path = input_dir / "metadata.csv"
    audio_path_text_pairs = read_audio_text_pairs(metadata_path.as_posix())

    sub_result, durations = [], []
    vocab_set = set()
    polyphone = True
    for audio_path, text in audio_path_text_pairs:
        if not Path(audio_path).exists():
            print(f"audio {audio_path} not found, skipping")
            continue
        audio_duration = get_audio_duration(audio_path)
        # assume tokenizer = "pinyin"  ("pinyin" | "char")
        text = convert_char_to_pinyin([text], polyphone=polyphone)[0]
        sub_result.append({"audio_path": audio_path, "text": text, "duration": audio_duration})
        durations.append(audio_duration)
        vocab_set.update(list(text))

    return sub_result, durations, vocab_set

def get_audio_duration(audio_path):
    audio, sample_rate = torchaudio.load(audio_path)
    num_channels = audio.shape[0]
    return audio.shape[1] / (sample_rate * num_channels)

def read_audio_text_pairs(csv_file_path):
    audio_text_pairs = []

    parent = Path(csv_file_path).parent
    with open(csv_file_path, mode='r', newline='', encoding='utf-8') as csvfile:
        reader = csv.reader(csvfile, delimiter='|')
        next(reader)  # Skip the header row
        for row in reader:
            if len(row) >= 2:
                audio_file = row[0].strip()  # First column: audio file path
                text = row[1].strip()          # Second column: text
                audio_file_path = parent / audio_file
                audio_text_pairs.append((audio_file_path.as_posix(), text))

    return audio_text_pairs


def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_finetune):
    out_dir = Path(out_dir)
    # save preprocessed dataset to disk
    out_dir.mkdir(exist_ok=True, parents=True)
    print(f"\nSaving to {out_dir} ...")

    # dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list})  # oom
    # dataset.save_to_disk(f"data/{dataset_name}/raw", max_shard_size="2GB")
    raw_arrow_path = out_dir / "raw.arrow"
    with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=1) as writer:
        for line in tqdm(result, desc=f"Writing to raw.arrow ..."):
            writer.write(line)

    # dup a json separately saving duration in case for DynamicBatchSampler ease
    dur_json_path = out_dir / "duration.json"
    with open(dur_json_path.as_posix(), 'w', encoding='utf-8') as f:
        json.dump({"duration": duration_list}, f, ensure_ascii=False)

    # vocab map, i.e. tokenizer
    # add alphabets and symbols (optional, if plan to ft on de/fr etc.)
    # if tokenizer == "pinyin":
    #     text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)])
    voca_out_path = out_dir / "vocab.txt"
    with open(voca_out_path.as_posix(), "w") as f:
        for vocab in sorted(text_vocab_set):
            f.write(vocab + "\n")

    if is_finetune:
        file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix()
        shutil.copy2(file_vocab_finetune, voca_out_path)
    else:
        with open(voca_out_path, "w") as f:
            for vocab in sorted(text_vocab_set):
                f.write(vocab + "\n")

    dataset_name = out_dir.stem
    print(f"\nFor {dataset_name}, sample count: {len(result)}")
    print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
    print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")


def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True):
    if is_finetune:
        assert PRETRAINED_VOCAB_PATH.exists(), f"pretrained vocab.txt not found: {PRETRAINED_VOCAB_PATH}"
    sub_result, durations, vocab_set = prepare_csv_wavs_dir(inp_dir)
    save_prepped_dataset(out_dir, sub_result, durations, vocab_set, is_finetune)


def cli():
    # finetune: python scripts/prepare_csv_wavs.py /path/to/input_dir /path/to/output_dir_pinyin
    # pretrain: python scripts/prepare_csv_wavs.py /path/to/output_dir_pinyin --pretrain
    parser = argparse.ArgumentParser(description="Prepare and save dataset.")
    parser.add_argument('inp_dir', type=str, help="Input directory containing the data.")
    parser.add_argument('out_dir', type=str, help="Output directory to save the prepared data.")
    parser.add_argument('--pretrain', action='store_true', help="Enable for new pretrain, otherwise is a fine-tune")

    args = parser.parse_args()

    prepare_and_save_set(args.inp_dir, args.out_dir, is_finetune=not args.pretrain)

if __name__ == "__main__":
    cli()