File size: 5,963 Bytes
d37849f
 
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37849f
 
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37849f
 
 
 
dd217c7
d37849f
 
 
dd217c7
d37849f
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37849f
 
dd217c7
 
 
 
 
 
d37849f
dd217c7
 
 
d37849f
dd217c7
 
 
 
 
 
d37849f
dd217c7
 
 
 
 
 
 
 
 
 
d37849f
 
 
 
 
 
 
 
dd217c7
d37849f
dd217c7
 
 
 
 
 
 
d37849f
 
 
 
 
 
 
 
 
dd217c7
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
d37849f
 
 
 
 
dd217c7
d37849f
 
dd217c7
d37849f
dd217c7
 
d37849f
dd217c7
 
 
 
 
 
 
 
 
 
 
 
d37849f
 
 
dd217c7
 
 
d37849f
 
 
 
 
 
 
 
 
dd217c7
 
 
d37849f
9eac142
dd217c7
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import sys
import os

sys.path.append(os.getcwd())

import time
import random
from tqdm import tqdm
import argparse

import torch
import torchaudio
from accelerate import Accelerator
from vocos import Vocos

from model import CFM, UNetT, DiT
from model.utils import (
    load_checkpoint,
    get_tokenizer,
    get_seedtts_testset_metainfo,
    get_librispeech_test_clean_metainfo,
    get_inference_prompt,
)

accelerator = Accelerator()
device = f"cuda:{accelerator.process_index}"


# --------------------- Dataset Settings -------------------- #

target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1

tokenizer = "pinyin"


# ---------------------- infer setting ---------------------- #

parser = argparse.ArgumentParser(description="batch inference")

parser.add_argument("-s", "--seed", default=None, type=int)
parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
parser.add_argument("-n", "--expname", required=True)
parser.add_argument("-c", "--ckptstep", default=1200000, type=int)

parser.add_argument("-nfe", "--nfestep", default=32, type=int)
parser.add_argument("-o", "--odemethod", default="euler")
parser.add_argument("-ss", "--swaysampling", default=-1, type=float)

parser.add_argument("-t", "--testset", required=True)

args = parser.parse_args()


seed = args.seed
dataset_name = args.dataset
exp_name = args.expname
ckpt_step = args.ckptstep
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt"

nfe_step = args.nfestep
ode_method = args.odemethod
sway_sampling_coef = args.swaysampling

testset = args.testset


infer_batch_size = 1  # max frames. 1 for ddp single inference (recommended)
cfg_strength = 2.0
speed = 1.0
use_truth_duration = False
no_ref_audio = False


if exp_name == "F5TTS_Base":
    model_cls = DiT
    model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)

elif exp_name == "E2TTS_Base":
    model_cls = UNetT
    model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)


if testset == "ls_pc_test_clean":
    metalst = "data/librispeech_pc_test_clean_cross_sentence.lst"
    librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean"  # test-clean path
    metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)

elif testset == "seedtts_test_zh":
    metalst = "data/seedtts_testset/zh/meta.lst"
    metainfo = get_seedtts_testset_metainfo(metalst)

elif testset == "seedtts_test_en":
    metalst = "data/seedtts_testset/en/meta.lst"
    metainfo = get_seedtts_testset_metainfo(metalst)


# path to save genereted wavs
if seed is None:
    seed = random.randint(-10000, 10000)
output_dir = (
    f"results/{exp_name}_{ckpt_step}/{testset}/"
    f"seed{seed}_{ode_method}_nfe{nfe_step}"
    f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
    f"_cfg{cfg_strength}_speed{speed}"
    f"{'_gt-dur' if use_truth_duration else ''}"
    f"{'_no-ref-audio' if no_ref_audio else ''}"
)


# -------------------------------------------------#

use_ema = True

prompts_all = get_inference_prompt(
    metainfo,
    speed=speed,
    tokenizer=tokenizer,
    target_sample_rate=target_sample_rate,
    n_mel_channels=n_mel_channels,
    hop_length=hop_length,
    target_rms=target_rms,
    use_truth_duration=use_truth_duration,
    infer_batch_size=infer_batch_size,
)

# Vocoder model
local = False
if local:
    vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
    vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
    state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
    vocos.load_state_dict(state_dict)
    vocos.eval()
else:
    vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")

# Tokenizer
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)

# Model
model = CFM(
    transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
    mel_spec_kwargs=dict(
        target_sample_rate=target_sample_rate,
        n_mel_channels=n_mel_channels,
        hop_length=hop_length,
    ),
    odeint_kwargs=dict(
        method=ode_method,
    ),
    vocab_char_map=vocab_char_map,
).to(device)

model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)

if not os.path.exists(output_dir) and accelerator.is_main_process:
    os.makedirs(output_dir)

# start batch inference
accelerator.wait_for_everyone()
start = time.time()

with accelerator.split_between_processes(prompts_all) as prompts:
    for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
        utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
        ref_mels = ref_mels.to(device)
        ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
        total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)

        # Inference
        with torch.inference_mode():
            generated, _ = model.sample(
                cond=ref_mels,
                text=final_text_list,
                duration=total_mel_lens,
                lens=ref_mel_lens,
                steps=nfe_step,
                cfg_strength=cfg_strength,
                sway_sampling_coef=sway_sampling_coef,
                no_ref_audio=no_ref_audio,
                seed=seed,
            )
        # Final result
        for i, gen in enumerate(generated):
            gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
            gen_mel_spec = gen.permute(0, 2, 1)
            generated_wave = vocos.decode(gen_mel_spec.cpu())
            if ref_rms_list[i] < target_rms:
                generated_wave = generated_wave * ref_rms_list[i] / target_rms
            torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)

accelerator.wait_for_everyone()
if accelerator.is_main_process:
    timediff = time.time() - start
    print(f"Done batch inference in {timediff / 60 :.2f} minutes.")