Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,956 Bytes
4dab15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
from typing import Literal
import torch
from torch import nn
import torch.nn.functional as F
from x_transformers import RMSNorm
from x_transformers.x_transformers import RotaryEmbedding
from f5_tts.model.modules import (
TimestepEmbedding,
ConvNeXtV2Block,
ConvPositionEmbedding,
Attention,
AttnProcessor,
FeedForward,
precompute_freqs_cis,
get_pos_embed_indices,
)
# Text embedding
class TextEmbedding(nn.Module):
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
super().__init__()
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
if conv_layers > 0:
self.extra_modeling = True
self.precompute_max_pos = 4096 # ~44s of 24khz audio
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
self.text_blocks = nn.Sequential(
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
)
else:
self.extra_modeling = False
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
batch, text_len = text.shape[0], text.shape[1]
text = F.pad(text, (0, seq_len - text_len), value=0)
if drop_text: # cfg for text
text = torch.zeros_like(text)
text = self.text_embed(text) # b n -> b n d
# possible extra modeling
if self.extra_modeling:
# sinus pos emb
batch_start = torch.zeros((batch,), dtype=torch.long)
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
text_pos_embed = self.freqs_cis[pos_idx]
text = text + text_pos_embed
# convnextv2 blocks
text = self.text_blocks(text)
return text
# noised input audio and context mixing embedding
class InputEmbedding(nn.Module):
def __init__(self, mel_dim, text_dim, out_dim):
super().__init__()
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722
if drop_audio_cond: # cfg for cond audio
cond = torch.zeros_like(cond)
x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
x = self.conv_pos_embed(x) + x
return x
# Flat UNet Transformer backbone
class UNetT(nn.Module):
def __init__(
self,
*,
dim,
depth=8,
heads=8,
dim_head=64,
dropout=0.1,
ff_mult=4,
mel_dim=100,
text_num_embeds=256,
text_dim=None,
conv_layers=0,
skip_connect_type: Literal["add", "concat", "none"] = "concat",
):
super().__init__()
assert depth % 2 == 0, "UNet-Transformer's depth should be even."
self.time_embed = TimestepEmbedding(dim)
if text_dim is None:
text_dim = mel_dim
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
self.rotary_embed = RotaryEmbedding(dim_head)
# transformer layers & skip connections
self.dim = dim
self.skip_connect_type = skip_connect_type
needs_skip_proj = skip_connect_type == "concat"
self.depth = depth
self.layers = nn.ModuleList([])
for idx in range(depth):
is_later_half = idx >= (depth // 2)
attn_norm = RMSNorm(dim)
attn = Attention(
processor=AttnProcessor(),
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
)
ff_norm = RMSNorm(dim)
ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
skip_proj = nn.Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None
self.layers.append(
nn.ModuleList(
[
skip_proj,
attn_norm,
attn,
ff_norm,
ff,
]
)
)
self.norm_out = RMSNorm(dim)
self.proj_out = nn.Linear(dim, mel_dim)
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: bool["b n"] | None = None, # noqa: F722
):
batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time)
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
# postfix time t to input x, [b n d] -> [b n+1 d]
x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
if mask is not None:
mask = F.pad(mask, (1, 0), value=1)
rope = self.rotary_embed.forward_from_seq_len(seq_len + 1)
# flat unet transformer
skip_connect_type = self.skip_connect_type
skips = []
for idx, (maybe_skip_proj, attn_norm, attn, ff_norm, ff) in enumerate(self.layers):
layer = idx + 1
# skip connection logic
is_first_half = layer <= (self.depth // 2)
is_later_half = not is_first_half
if is_first_half:
skips.append(x)
if is_later_half:
skip = skips.pop()
if skip_connect_type == "concat":
x = torch.cat((x, skip), dim=-1)
x = maybe_skip_proj(x)
elif skip_connect_type == "add":
x = x + skip
# attention and feedforward blocks
x = attn(attn_norm(x), rope=rope, mask=mask) + x
x = ff(ff_norm(x)) + x
assert len(skips) == 0
x = self.norm_out(x)[:, 1:, :] # unpack t from x
return self.proj_out(x)
|