File size: 10,819 Bytes
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# just for speaker similarity evaluation, third-party code

# From https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN

import os
import torch
import torch.nn as nn
import torch.nn.functional as F


''' Res2Conv1d + BatchNorm1d + ReLU
'''

class Res2Conv1dReluBn(nn.Module):
    '''
    in_channels == out_channels == channels
    '''

    def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4):
        super().__init__()
        assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
        self.scale = scale
        self.width = channels // scale
        self.nums = scale if scale == 1 else scale - 1

        self.convs = []
        self.bns = []
        for i in range(self.nums):
            self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias))
            self.bns.append(nn.BatchNorm1d(self.width))
        self.convs = nn.ModuleList(self.convs)
        self.bns = nn.ModuleList(self.bns)

    def forward(self, x):
        out = []
        spx = torch.split(x, self.width, 1)
        for i in range(self.nums):
            if i == 0:
                sp = spx[i]
            else:
                sp = sp + spx[i]
            # Order: conv -> relu -> bn
            sp = self.convs[i](sp)
            sp = self.bns[i](F.relu(sp))
            out.append(sp)
        if self.scale != 1:
            out.append(spx[self.nums])
        out = torch.cat(out, dim=1)

        return out


''' Conv1d + BatchNorm1d + ReLU
'''

class Conv1dReluBn(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True):
        super().__init__()
        self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
        self.bn = nn.BatchNorm1d(out_channels)

    def forward(self, x):
        return self.bn(F.relu(self.conv(x)))


''' The SE connection of 1D case.
'''

class SE_Connect(nn.Module):
    def __init__(self, channels, se_bottleneck_dim=128):
        super().__init__()
        self.linear1 = nn.Linear(channels, se_bottleneck_dim)
        self.linear2 = nn.Linear(se_bottleneck_dim, channels)

    def forward(self, x):
        out = x.mean(dim=2)
        out = F.relu(self.linear1(out))
        out = torch.sigmoid(self.linear2(out))
        out = x * out.unsqueeze(2)

        return out


''' SE-Res2Block of the ECAPA-TDNN architecture.
'''

# def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
#     return nn.Sequential(
#         Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
#         Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
#         Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
#         SE_Connect(channels)
#     )

class SE_Res2Block(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim):
        super().__init__()
        self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
        self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale)
        self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
        self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)

        self.shortcut = None
        if in_channels != out_channels:
            self.shortcut = nn.Conv1d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
            )

    def forward(self, x):
        residual = x
        if self.shortcut:
            residual = self.shortcut(x)

        x = self.Conv1dReluBn1(x)
        x = self.Res2Conv1dReluBn(x)
        x = self.Conv1dReluBn2(x)
        x = self.SE_Connect(x)

        return x + residual


''' Attentive weighted mean and standard deviation pooling.
'''

class AttentiveStatsPool(nn.Module):
    def __init__(self, in_dim, attention_channels=128, global_context_att=False):
        super().__init__()
        self.global_context_att = global_context_att

        # Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
        if global_context_att:
            self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1)  # equals W and b in the paper
        else:
            self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1)  # equals W and b in the paper
        self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1)  # equals V and k in the paper

    def forward(self, x):

        if self.global_context_att:
            context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
            context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
            x_in = torch.cat((x, context_mean, context_std), dim=1)
        else:
            x_in = x

        # DON'T use ReLU here! In experiments, I find ReLU hard to converge.
        alpha = torch.tanh(self.linear1(x_in))
        # alpha = F.relu(self.linear1(x_in))
        alpha = torch.softmax(self.linear2(alpha), dim=2)
        mean = torch.sum(alpha * x, dim=2)
        residuals = torch.sum(alpha * (x ** 2), dim=2) - mean ** 2
        std = torch.sqrt(residuals.clamp(min=1e-9))
        return torch.cat([mean, std], dim=1)


class ECAPA_TDNN(nn.Module):
    def __init__(self, feat_dim=80, channels=512, emb_dim=192, global_context_att=False,
                 feat_type='wavlm_large', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None):
        super().__init__()

        self.feat_type = feat_type
        self.feature_selection = feature_selection
        self.update_extract = update_extract
        self.sr = sr
        
        torch.hub._validate_not_a_forked_repo=lambda a,b,c: True
        try:
            local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main")
            self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source='local', config_path=config_path)
        except:
            self.feature_extract = torch.hub.load('s3prl/s3prl', feat_type)

        if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"):
            self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False
        if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"):
            self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False

        self.feat_num = self.get_feat_num()
        self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))

        if feat_type != 'fbank' and feat_type != 'mfcc':
            freeze_list = ['final_proj', 'label_embs_concat', 'mask_emb', 'project_q', 'quantizer']
            for name, param in self.feature_extract.named_parameters():
                for freeze_val in freeze_list:
                    if freeze_val in name:
                        param.requires_grad = False
                        break

        if not self.update_extract:
            for param in self.feature_extract.parameters():
                param.requires_grad = False

        self.instance_norm = nn.InstanceNorm1d(feat_dim)
        # self.channels = [channels] * 4 + [channels * 3]
        self.channels = [channels] * 4 + [1536]

        self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
        self.layer2 = SE_Res2Block(self.channels[0], self.channels[1], kernel_size=3, stride=1, padding=2, dilation=2, scale=8, se_bottleneck_dim=128)
        self.layer3 = SE_Res2Block(self.channels[1], self.channels[2], kernel_size=3, stride=1, padding=3, dilation=3, scale=8, se_bottleneck_dim=128)
        self.layer4 = SE_Res2Block(self.channels[2], self.channels[3], kernel_size=3, stride=1, padding=4, dilation=4, scale=8, se_bottleneck_dim=128)

        # self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
        cat_channels = channels * 3
        self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
        self.pooling = AttentiveStatsPool(self.channels[-1], attention_channels=128, global_context_att=global_context_att)
        self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
        self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)


    def get_feat_num(self):
        self.feature_extract.eval()
        wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
        with torch.no_grad():
            features = self.feature_extract(wav)
        select_feature = features[self.feature_selection]
        if isinstance(select_feature, (list, tuple)):
            return len(select_feature)
        else:
            return 1

    def get_feat(self, x):
        if self.update_extract:
            x = self.feature_extract([sample for sample in x])
        else:
            with torch.no_grad():
                if self.feat_type == 'fbank' or self.feat_type == 'mfcc':
                    x = self.feature_extract(x) + 1e-6  # B x feat_dim x time_len
                else:
                    x = self.feature_extract([sample for sample in x])

        if self.feat_type == 'fbank':
            x = x.log()

        if self.feat_type != "fbank" and self.feat_type != "mfcc":
            x = x[self.feature_selection]
            if isinstance(x, (list, tuple)):
                x = torch.stack(x, dim=0)
            else:
                x = x.unsqueeze(0)
            norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
            x = (norm_weights * x).sum(dim=0)
            x = torch.transpose(x, 1, 2) + 1e-6

        x = self.instance_norm(x)
        return x

    def forward(self, x):
        x = self.get_feat(x)

        out1 = self.layer1(x)
        out2 = self.layer2(out1)
        out3 = self.layer3(out2)
        out4 = self.layer4(out3)

        out = torch.cat([out2, out3, out4], dim=1)
        out = F.relu(self.conv(out))
        out = self.bn(self.pooling(out))
        out = self.linear(out)

        return out


def ECAPA_TDNN_SMALL(feat_dim, emb_dim=256, feat_type='wavlm_large', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None):
    return ECAPA_TDNN(feat_dim=feat_dim, channels=512, emb_dim=emb_dim,
                      feat_type=feat_type, sr=sr, feature_selection=feature_selection, update_extract=update_extract, config_path=config_path)