File size: 9,448 Bytes
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""

from __future__ import annotations
from typing import Callable
from random import random

import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence

from torchdiffeq import odeint

from f5_tts.model.modules import MelSpec
from f5_tts.model.utils import (
    default,
    exists,
    list_str_to_idx,
    list_str_to_tensor,
    lens_to_mask,
    mask_from_frac_lengths,
)


class CFM(nn.Module):
    def __init__(
        self,
        transformer: nn.Module,
        sigma=0.0,
        odeint_kwargs: dict = dict(
            # atol = 1e-5,
            # rtol = 1e-5,
            method="euler"  # 'midpoint'
        ),
        audio_drop_prob=0.3,
        cond_drop_prob=0.2,
        num_channels=None,
        mel_spec_module: nn.Module | None = None,
        mel_spec_kwargs: dict = dict(),
        frac_lengths_mask: tuple[float, float] = (0.7, 1.0),
        vocab_char_map: dict[str:int] | None = None,
    ):
        super().__init__()

        self.frac_lengths_mask = frac_lengths_mask

        # mel spec
        self.mel_spec = default(mel_spec_module, MelSpec(**mel_spec_kwargs))
        num_channels = default(num_channels, self.mel_spec.n_mel_channels)
        self.num_channels = num_channels

        # classifier-free guidance
        self.audio_drop_prob = audio_drop_prob
        self.cond_drop_prob = cond_drop_prob

        # transformer
        self.transformer = transformer
        dim = transformer.dim
        self.dim = dim

        # conditional flow related
        self.sigma = sigma

        # sampling related
        self.odeint_kwargs = odeint_kwargs

        # vocab map for tokenization
        self.vocab_char_map = vocab_char_map

    @property
    def device(self):
        return next(self.parameters()).device

    @torch.no_grad()
    def sample(
        self,
        cond: float["b n d"] | float["b nw"],  # noqa: F722
        text: int["b nt"] | list[str],  # noqa: F722
        duration: int | int["b"],  # noqa: F821
        *,
        lens: int["b"] | None = None,  # noqa: F821
        steps=32,
        cfg_strength=1.0,
        sway_sampling_coef=None,
        seed: int | None = None,
        max_duration=4096,
        vocoder: Callable[[float["b d n"]], float["b nw"]] | None = None,  # noqa: F722
        no_ref_audio=False,
        duplicate_test=False,
        t_inter=0.1,
        edit_mask=None,
    ):
        self.eval()

        if next(self.parameters()).dtype == torch.float16:
            cond = cond.half()

        # raw wave

        if cond.ndim == 2:
            cond = self.mel_spec(cond)
            cond = cond.permute(0, 2, 1)
            assert cond.shape[-1] == self.num_channels

        batch, cond_seq_len, device = *cond.shape[:2], cond.device
        if not exists(lens):
            lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)

        # text

        if isinstance(text, list):
            if exists(self.vocab_char_map):
                text = list_str_to_idx(text, self.vocab_char_map).to(device)
            else:
                text = list_str_to_tensor(text).to(device)
            assert text.shape[0] == batch

        if exists(text):
            text_lens = (text != -1).sum(dim=-1)
            lens = torch.maximum(text_lens, lens)  # make sure lengths are at least those of the text characters

        # duration

        cond_mask = lens_to_mask(lens)
        if edit_mask is not None:
            cond_mask = cond_mask & edit_mask

        if isinstance(duration, int):
            duration = torch.full((batch,), duration, device=device, dtype=torch.long)

        duration = torch.maximum(lens + 1, duration)  # just add one token so something is generated
        duration = duration.clamp(max=max_duration)
        max_duration = duration.amax()

        # duplicate test corner for inner time step oberservation
        if duplicate_test:
            test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2 * cond_seq_len), value=0.0)

        cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value=0.0)
        cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value=False)
        cond_mask = cond_mask.unsqueeze(-1)
        step_cond = torch.where(
            cond_mask, cond, torch.zeros_like(cond)
        )  # allow direct control (cut cond audio) with lens passed in

        if batch > 1:
            mask = lens_to_mask(duration)
        else:  # save memory and speed up, as single inference need no mask currently
            mask = None

        # test for no ref audio
        if no_ref_audio:
            cond = torch.zeros_like(cond)

        # neural ode

        def fn(t, x):
            # at each step, conditioning is fixed
            # step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))

            # predict flow
            pred = self.transformer(
                x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False
            )
            if cfg_strength < 1e-5:
                return pred

            null_pred = self.transformer(
                x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True
            )
            return pred + (pred - null_pred) * cfg_strength

        # noise input
        # to make sure batch inference result is same with different batch size, and for sure single inference
        # still some difference maybe due to convolutional layers
        y0 = []
        for dur in duration:
            if exists(seed):
                torch.manual_seed(seed)
            y0.append(torch.randn(dur, self.num_channels, device=self.device, dtype=step_cond.dtype))
        y0 = pad_sequence(y0, padding_value=0, batch_first=True)

        t_start = 0

        # duplicate test corner for inner time step oberservation
        if duplicate_test:
            t_start = t_inter
            y0 = (1 - t_start) * y0 + t_start * test_cond
            steps = int(steps * (1 - t_start))

        t = torch.linspace(t_start, 1, steps, device=self.device, dtype=step_cond.dtype)
        if sway_sampling_coef is not None:
            t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)

        trajectory = odeint(fn, y0, t, **self.odeint_kwargs)

        sampled = trajectory[-1]
        out = sampled
        out = torch.where(cond_mask, cond, out)

        if exists(vocoder):
            out = out.permute(0, 2, 1)
            out = vocoder(out)

        return out, trajectory

    def forward(
        self,
        inp: float["b n d"] | float["b nw"],  # mel or raw wave  # noqa: F722
        text: int["b nt"] | list[str],  # noqa: F722
        *,
        lens: int["b"] | None = None,  # noqa: F821
        noise_scheduler: str | None = None,
    ):
        # handle raw wave
        if inp.ndim == 2:
            inp = self.mel_spec(inp)
            inp = inp.permute(0, 2, 1)
            assert inp.shape[-1] == self.num_channels

        batch, seq_len, dtype, device, _σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma

        # handle text as string
        if isinstance(text, list):
            if exists(self.vocab_char_map):
                text = list_str_to_idx(text, self.vocab_char_map).to(device)
            else:
                text = list_str_to_tensor(text).to(device)
            assert text.shape[0] == batch

        # lens and mask
        if not exists(lens):
            lens = torch.full((batch,), seq_len, device=device)

        mask = lens_to_mask(lens, length=seq_len)  # useless here, as collate_fn will pad to max length in batch

        # get a random span to mask out for training conditionally
        frac_lengths = torch.zeros((batch,), device=self.device).float().uniform_(*self.frac_lengths_mask)
        rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)

        if exists(mask):
            rand_span_mask &= mask

        # mel is x1
        x1 = inp

        # x0 is gaussian noise
        x0 = torch.randn_like(x1)

        # time step
        time = torch.rand((batch,), dtype=dtype, device=self.device)
        # TODO. noise_scheduler

        # sample xt (φ_t(x) in the paper)
        t = time.unsqueeze(-1).unsqueeze(-1)
        φ = (1 - t) * x0 + t * x1
        flow = x1 - x0

        # only predict what is within the random mask span for infilling
        cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)

        # transformer and cfg training with a drop rate
        drop_audio_cond = random() < self.audio_drop_prob  # p_drop in voicebox paper
        if random() < self.cond_drop_prob:  # p_uncond in voicebox paper
            drop_audio_cond = True
            drop_text = True
        else:
            drop_text = False

        # if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here
        # adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
        pred = self.transformer(
            x=φ, cond=cond, text=text, time=time, drop_audio_cond=drop_audio_cond, drop_text=drop_text
        )

        # flow matching loss
        loss = F.mse_loss(pred, flow, reduction="none")
        loss = loss[rand_span_mask]

        return loss.mean(), cond, pred