File size: 6,821 Bytes
ea30afb
9fdba0a
ef38c60
 
908d449
 
eeb8511
 
 
67bb418
 
d21820e
 
f85f7c4
 
7c59629
d21820e
67bb418
 
 
 
12a2b97
ef38c60
d21820e
ef38c60
ea30afb
 
2c0f2ed
 
 
 
 
 
d21820e
 
 
 
 
ef38c60
 
 
 
 
 
 
 
b7463e4
ef38c60
 
b7463e4
 
ef38c60
 
 
b7463e4
 
 
 
 
 
ef38c60
 
 
 
 
 
 
 
 
 
 
396447e
 
 
 
ef38c60
9fdba0a
 
 
eeb8511
ef38c60
7916190
2c0f2ed
 
42be940
 
ef38c60
9fdba0a
ef38c60
396447e
ef38c60
ea30afb
908d449
 
 
 
 
 
2c0f2ed
 
 
42be940
 
 
eeb8511
ef38c60
 
 
 
 
 
7916190
ef38c60
7916190
 
eeb8511
ef38c60
 
7916190
ef38c60
7916190
 
eeb8511
396447e
9fdba0a
396447e
908d449
396447e
908d449
396447e
 
908d449
396447e
 
dcd919f
908d449
396447e
 
 
 
dcd919f
396447e
 
 
 
 
 
 
 
 
 
 
 
 
67bb418
396447e
908d449
396447e
186fdbf
 
 
ef38c60
e29eb69
396447e
 
 
 
 
 
908d449
 
9fdba0a
eeb8511
9fdba0a
 
 
 
 
ef38c60
7916190
2c0f2ed
 
42be940
 
eeb8511
 
 
908d449
eeb8511
42be940
eeb8511
908d449
ef38c60
908d449
ef38c60
 
 
7916190
 
2c0f2ed
 
42be940
 
 
908d449
 
9fdba0a
 
396447e
9fdba0a
 
396447e
908d449
 
 
9fdba0a
 
a265f6f
9fdba0a
 
dcd919f
908d449
 
ef38c60
 
 
396447e
ef38c60
 
 
fc7864f
396447e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union

import google.generativeai as genai
import gradio as gr
from PIL import Image

print("google-generativeai:", genai.__version__)

GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")

TITLE = """ """
SUBTITLE = """ """
DUPLICATE = """"""

AVATAR_IMAGES = (
    None,
    "https://media.roboflow.com/spaces/gemini-icon.png"
)

IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]


def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
    if not stop_sequences:
        return None
    return [sequence.strip() for sequence in stop_sequences.split(",")]


def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    image_height = int(image.height * IMAGE_WIDTH / image.width)
    return image.resize((IMAGE_WIDTH, image_height))


def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path


def preprocess_chat_history(
    history: CHAT_HISTORY
) -> List[Dict[str, Union[str, List[str]]]]:
    messages = []
    for user_message, model_message in history:
        if isinstance(user_message, tuple):
            pass
        elif user_message is not None:
            messages.append({'role': 'user', 'parts': [user_message]})
        if model_message is not None:
            messages.append({'role': 'model', 'parts': [model_message]})
    return messages


def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    for file in files:
        image = Image.open(file).convert('RGB')
        image = preprocess_image(image)
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot


def user(text_prompt: str, chatbot: CHAT_HISTORY):
    if text_prompt:
        # Pre-filled text to go with user input
        prefilled_text = "You are a specialized Prompt Generator focused on improving the original text while maintaining its essence. Keep the prompt length under 50 words never exceed this limit"
        full_prompt = f"{prefilled_text} {text_prompt}"
        chatbot.append((full_prompt, None))
    return "", chatbot


def bot(
    google_key: str,
    files: Optional[List[str]],
    temperature: float,
    max_output_tokens: int,
    stop_sequences: str,
    top_k: int,
    top_p: float,
    chatbot: CHAT_HISTORY
):
    if len(chatbot) == 0:
        return ''

    google_key = google_key if google_key else GOOGLE_API_KEY
    if not google_key:
        raise ValueError(
            "GOOGLE_API_KEY is not set. "
            "Please follow the instructions in the README to set it up.")

    genai.configure(api_key=google_key)
    generation_config = genai.types.GenerationConfig(
        temperature=temperature,
        max_output_tokens=max_output_tokens,
        stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
        top_k=top_k,
        top_p=top_p)

    if files:
        text_prompt = [chatbot[-1][0]] \
            if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \
            else []
        image_prompt = [Image.open(file).convert('RGB') for file in files]
        model = genai.GenerativeModel('gemini-pro-vision')
        response = model.generate_content(
            text_prompt + image_prompt,
            stream=True,
            generation_config=generation_config)
    else:
        messages = preprocess_chat_history(chatbot)
        model = genai.GenerativeModel('gemini-pro')
        response = model.generate_content(
            messages,
            stream=True,
            generation_config=generation_config)

    generated_text = ''
    for chunk in response:
        generated_text += chunk.text

    return generated_text

output_text_component = gr.Textbox(
    label="Generated Text",
    value="",
    placeholder="Generated text will appear here",
    scale=8,
    multiline=True,
)

def copy_text():
    output_text_component.copy()

output_text_component_copy = gr.HTML(
    "<svg xmlns='http://www.w3.org/2000/svg' width='24' height='24' viewBox='0 0 24 24' "
    "fill='none' stroke='currentColor' stroke-width='2' stroke-linecap='round' "
    "stroke-linejoin='round' class='feather feather-copy' onclick='copyText()'>"
    "<rect x='9' y='9' width='13' height='13' rx='2' ry='2'></rect>"
    "<path d='M9 15h4'></path><path d='M15 9v6'></path></svg>"
    "<script>"
    "function copyText() {"
    "var copyText = document.getElementById('output-text');"
    "copyText.select();"
    "document.execCommand('copy');"
    "alert('Copied to clipboard!');"
    "}"
    "</script>"
)

text_prompt_component = gr.Textbox(
    placeholder="Hi there! [press Enter]",
    show_label=False,
    autofocus=True,
    scale=8,
)

chatbot_component = gr.Chatbot(
    label='Gemini',
    bubble_full_width=False,
    avatar_images=AVATAR_IMAGES,
    scale=2,
    height=400
)

user_inputs = [
    text_prompt_component,
    chatbot_component
]

bot_inputs = [
    google_key_component,
    upload_button_component,
    temperature_component,
    max_output_tokens_component,
    stop_sequences_component,
    top_k_component,
    top_p_component,
    chatbot_component
]

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    gr.HTML(DUPLICATE)
    with gr.Column():
        chatbot_component.render()
        with gr.Row():
            text_prompt_component.render()
            upload_button_component.render()
            run_button_component.render()
        with gr.Accordion("Parameters", open=False):
            temperature_component.render()
            max_output_tokens_component.render()
            stop_sequences_component.render()
            with gr.Accordion("Advanced", open=False):
                top_k_component.render()
                top_p_component.render()

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[output_text_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[output_text_component_copy],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[output_text_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[output_text_component_copy],
    )

    upload_button_component.upload(
        fn=upload,
        inputs=[upload_button_component, chatbot_component],
        outputs=[output_text_component, chatbot_component],
        queue=False
    )

demo.queue(max_size=99).launch(debug=False, show_error=True)