import os from bs4 import BeautifulSoup import gradio as gr from langchain import OpenAI, ConversationChain, LLMChain, PromptTemplate from langchain.memory import ConversationBufferWindowMemory import openai import requests from langchain.chat_models import ChatOpenAI import ast import imgkit import pdfkit import imgkit import re import glob import openai OPENAI_API_KEY="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" dict_list_format = '''[{'header': 'slide1_title', 'paragraphs': ['bullet_point1', 'bullet_point2', 'bullet_point3',]}, 'header': 'slide2_title', 'paragraphs': ['bullet_point1', 'bullet_point2', 'bullet_point3', ...]}, 'header': 'slide3_title', 'paragraphs': ['bullet_point1', 'bullet_point2', 'bullet_point3', ...]}, 'header': 'slide4_title', 'paragraphs': ['bullet_point1', 'bullet_point2', 'bullet_point3', ...]}, 'header': 'slide5_title', 'paragraphs': ['bullet_point1', 'bullet_point2', 'bullet_point3', ...]}] ''' import google.cloud.texttospeech as tts from google.oauth2 import service_account credentials = service_account.Credentials.from_service_account_file("tts_google.json") def text_to_wav(voice_name: str, text: str, file_name: str): language_code = "-".join(voice_name.split("-")[:2]) text_input = tts.SynthesisInput(text=text) voice_params = tts.VoiceSelectionParams( language_code=language_code, name=voice_name ) audio_config = tts.AudioConfig(audio_encoding=tts.AudioEncoding.LINEAR16) client = tts.TextToSpeechClient(credentials=credentials) response = client.synthesize_speech( input=text_input, voice=voice_params, audio_config=audio_config, ) filename = f"{file_name}" with open(filename, "wb") as out: out.write(response.audio_content) print(f'Generated speech saved to "{filename}"') def prompt_to_video(video_prompt): template = ''' {history} {human_input} ''' prompt = PromptTemplate( input_variables=["history", "human_input"], template=template ) chatgpt_chain = LLMChain( llm=ChatOpenAI(model="gpt-4", temperature=0.5,openai_api_key=OPENAI_API_KEY), prompt=prompt, verbose=True, memory=ConversationBufferWindowMemory(k=10), ) prompt_input1 = f''' You are a world expert oracle that knows everything. You are also an excellent teacher that explains everything succintly and simply like towards a kid. You are also an expert slide maker and think everything step by step. You are tasked to create 5 slides today. Here is the topic: {video_prompt} Here is the output python list format: {dict_list_format} The slides should be created in a python list format. The list consists of python dictionary objects in the list. Each dictionary object contains the header and paragraphs as keys. Do not name the slide as "Slide 1" or any number. Insert header as header string. The header is the title of the slide and the paragraph should be a list of string object. Return the output in a python list format. Make sure there is only 5 objects in the python list. Do not declare a new variable, output the python list object only. Do not say "Here's your". Directly output the python list object only. Make sure there is nothing before or after the python list object. ONLY output the python list object. ''' slide_str_list = [] while len(slide_str_list) != 5: slide_dict=chatgpt_chain.predict(human_input=prompt_input1) try: slide_str_list = ast.literal_eval(slide_dict) except: print("Already formatted.") print("this is the slides:", slide_str_list) print("length is:", len(slide_str_list)) html_out_list = [] for i in slide_str_list: template = ''' {history} {human_input} ''' prompt = PromptTemplate( input_variables=["history", "human_input"], template=template ) chatgpt_chain = LLMChain( llm=ChatOpenAI(model="gpt-3.5-turbo", temperature=0,openai_api_key=OPENAI_API_KEY), prompt=prompt, verbose=True, memory=ConversationBufferWindowMemory(k=10), ) prompt_input2 = f''' You are a world expert oracle that knows everything. You are also an excellent teacher that explains everything succintly and simply like towards a kid. You are also an expert slide maker and thinks about everything step by step. You are tasked to convert a python dictionary into a formatted HTML code. The dictionary object consist of the header and paragraph key. The paragraph key is a list of strings. Here is the dictionary object: {i} The slide should be created in a HTML format with the correct format of 16:9 aspect ratio. The wording of the slides should be formatted appropriately with the header and paragraph. The paragraph in the slides should be formatted in bullet points and each bullet point should be 1.5 line spacing apart. Header and paragraph should be aligned in an aesthetically pleasing way. Return the output as a nicely formatted HTML string. Header should be aligned to the center. Font color should be white and background black. Font should be Roboto. Do not say "Here's your" or "Sure". Directly output the HTML string only. Make sure there is nothing before or after the HTML string. ONLY output the HTML string. Do not explain what is the HTML code about. Do not declare a new variable, output the HTML string only. ''' html_out_list.append(chatgpt_chain.predict(human_input=prompt_input2)) extract_path = 'slide_' + video_prompt os.makedirs(extract_path, exist_ok=True) num = 1 for html_string in html_out_list: print(html_string) with open(f"{extract_path}/slide_{num}.html", "w") as file: file.write(html_string) num = num + 1 # Create the directory to extract to if it doesn't exist os.makedirs(extract_path, exist_ok=True) # Configuration for imgkit config = imgkit.config(wkhtmltoimage='/usr/local/bin/wkhtmltoimage') # The path to store the images image_path = os.path.join(extract_path, 'images') os.makedirs(image_path, exist_ok=True) # Get the list of HTML files html_files = sorted([f for f in os.listdir(extract_path) if f.endswith('.html')]) # Dictionary to store the file names and their corresponding images file_images = {} # Loop through the HTML files and convert them to images for html_file in html_files: # Full path of the HTML file full_path = os.path.join(extract_path, html_file) # Image file name image_file = re.sub('.html$', '.jpg', html_file) # Full path of the image file full_image_path = os.path.join(image_path, image_file) # Convert the HTML to an image imgkit.from_file(full_path, full_image_path, config=config) # Store the image file name file_images[html_file] = image_file print(file_images) template = ''' {history} {human_input} ''' prompt = PromptTemplate( input_variables=["history", "human_input"], template=template ) chatgpt_chain = LLMChain( llm=ChatOpenAI(model="gpt-4", temperature=0.5,openai_api_key=OPENAI_API_KEY), prompt=prompt, verbose=True, memory=ConversationBufferWindowMemory(k=10), ) prompt_input3 = f''' You are a world expert oracle that knows everything. You are also an excellent teacher that explains everything succintly and simply like towards a kid. You are an expert orator and presenter. You are tasked to create a voiceover for 5 slides. The slides are formatted in a python list of dictionary objects. Each dictionary object is a slide. {slide_str_list} Input: Python list of dictionary objects Output: Python list of string objects The output list consists of string objects. The voiceover text purpose is a speech presentation of the slide. The voiceover text should be about the content of each slide but at the same time add additional information to make the presentation funny and engaging. Each string is a voiceover text of each slide of the python dictionary. Each voiceover string object should be around 80 words. Make sure there is only 5 objects in the python list. Do not declare a new variable, output the python list object only. Make sure there is nothing before or after the python list object. ONLY output the python list object. Return the output in a python list format. Do not say "Here's your" or "Sure". Directly output python list of dictionary object only. Do not declare a new variable, output the python list of dictionary object only. ''' voiceover_list = [] voiceover_list=chatgpt_chain.predict(human_input=prompt_input3) try: voiceover_list = ast.literal_eval(voiceover_list) except: print("Already formatted.") num = 1 for i in voiceover_list: file_name = "slide/slide" + f"_{num}" + ".wav" text_to_wav("en-US-Neural2-F",i, file_name) print(file_name) num = num + 1 # Get list of .jpg and .wav files from the correct directories jpg_files = sorted(glob.glob(f"{extract_path}/images/*.jpg")) wav_files = sorted(glob.glob(f"{extract_path}/*.wav")) jpg_files, wav_files from moviepy.editor import ImageSequenceClip, AudioFileClip, concatenate_videoclips # Create a list to store the clips clips = [] # Loop through each jpg and wav file for jpg_file, wav_file in zip(jpg_files, wav_files): # Load the audio file and get its duration audio = AudioFileClip(wav_file) duration = audio.duration print(duration) # Calculate the frame rate as the inverse of the duration fps = 1 / duration if duration != 0 else 1 # Create a video clip from the image and set its duration and fps to match the audio clip = ImageSequenceClip([jpg_file], durations=[duration], fps=fps) # Set the audio of the clip to the wav file clip = clip.set_audio(audio) # Add the clip to the list of clips clips.append(clip) # Concatenate all clips into a single video video = concatenate_videoclips(clips) video_path = f"{extract_path}/output.mp4" # Write the video to a file video.write_videofile(video_path) return video_path iface = gr.Interface( fn=prompt_to_video, inputs="text", outputs=["file"], title="Prompt to Video Tutorial", description="Create a video tutorial to learn about anything!") iface.launch()