Spaces:
Runtime error
Runtime error
File size: 11,094 Bytes
2ac6b63 2132d8f 2ac6b63 c4244f7 2ac6b63 e9eaf7f 2ac6b63 e9eaf7f 2ac6b63 e9eaf7f 2ac6b63 e9eaf7f 2ac6b63 dfccc9e 2ac6b63 76065d0 2ac6b63 e9eaf7f 2ac6b63 e9eaf7f 2ac6b63 e9eaf7f 2ac6b63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import os
from bs4 import BeautifulSoup
import gradio as gr
from langchain import OpenAI, ConversationChain, LLMChain, PromptTemplate
from langchain.memory import ConversationBufferWindowMemory
import openai
import requests
from langchain.chat_models import ChatOpenAI
import ast
import imgkit
import pdfkit
import imgkit
import re
import glob
import openai
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
dict_list_format = '''[{'header': 'slide1_title',
'paragraphs': ['bullet_point1',
'bullet_point2',
'bullet_point3',]},
'header': 'slide2_title',
'paragraphs': ['bullet_point1',
'bullet_point2',
'bullet_point3',
...]},
'header': 'slide3_title',
'paragraphs': ['bullet_point1',
'bullet_point2',
'bullet_point3',
...]},
'header': 'slide4_title',
'paragraphs': ['bullet_point1',
'bullet_point2',
'bullet_point3',
...]},
'header': 'slide5_title',
'paragraphs': ['bullet_point1',
'bullet_point2',
'bullet_point3',
...]}]
'''
import google.cloud.texttospeech as tts
from google.oauth2 import service_account
credentials = service_account.Credentials.from_service_account_file("tts_google.json")
def text_to_wav(voice_name: str, text: str, file_name: str):
language_code = "-".join(voice_name.split("-")[:2])
text_input = tts.SynthesisInput(text=text)
voice_params = tts.VoiceSelectionParams(
language_code=language_code, name=voice_name
)
audio_config = tts.AudioConfig(audio_encoding=tts.AudioEncoding.LINEAR16)
client = tts.TextToSpeechClient(credentials=credentials)
response = client.synthesize_speech(
input=text_input,
voice=voice_params,
audio_config=audio_config,
)
filename = f"{file_name}"
with open(filename, "wb") as out:
out.write(response.audio_content)
print(f'Generated speech saved to "{filename}"')
def prompt_to_video(video_prompt):
template = '''
{history}
{human_input}
'''
prompt = PromptTemplate(
input_variables=["history", "human_input"],
template=template
)
chatgpt_chain = LLMChain(
llm=ChatOpenAI(model="gpt-4", temperature=0.5,openai_api_key=OPENAI_API_KEY),
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=10),
)
prompt_input1 = f'''
You are a world expert oracle that knows everything.
You are also an excellent teacher that explains everything succintly and simply like towards a kid.
You are also an expert slide maker and think everything step by step.
You are tasked to create 5 slides today.
Here is the topic:
{video_prompt}
Here is the output python list format:
{dict_list_format}
The slides should be created in a python list format.
The list consists of python dictionary objects in the list.
Each dictionary object contains the header and paragraphs as keys.
Do not name the slide as "Slide 1" or any number. Insert header as header string.
The header is the title of the slide and the paragraph should be a list of string object.
Return the output in a python list format.
Make sure there is only 5 objects in the python list.
Do not declare a new variable, output the python list object only.
Do not say "Here's your". Directly output the python list object only.
Make sure there is nothing before or after the python list object. ONLY output the python list object.
'''
slide_str_list = []
while len(slide_str_list) != 5:
slide_dict=chatgpt_chain.predict(human_input=prompt_input1)
try:
slide_str_list = ast.literal_eval(slide_dict)
except:
print("Already formatted.")
print("this is the slides:", slide_str_list)
print("length is:", len(slide_str_list))
html_out_list = []
for i in slide_str_list:
template = '''
{history}
{human_input}
'''
prompt = PromptTemplate(
input_variables=["history", "human_input"],
template=template
)
chatgpt_chain = LLMChain(
llm=ChatOpenAI(model="gpt-3.5-turbo", temperature=0,openai_api_key=OPENAI_API_KEY),
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=10),
)
prompt_input2 = f'''
You are a world expert oracle that knows everything.
You are also an excellent teacher that explains everything succintly and simply like towards a kid.
You are also an expert slide maker and thinks about everything step by step.
You are tasked to convert a python dictionary into a formatted HTML code.
The dictionary object consist of the header and paragraph key.
The paragraph key is a list of strings.
Here is the dictionary object:
{i}
The slide should be created in a HTML format with the correct format of 16:9 aspect ratio.
The wording of the slides should be formatted appropriately with the header and paragraph.
The paragraph in the slides should be formatted in bullet points and each bullet point should be 1.5 line spacing apart.
Header and paragraph should be aligned in an aesthetically pleasing way.
Return the output as a nicely formatted HTML string.
Header should be aligned to the center.
Font color should be white and background black.
Font should be Roboto.
Do not say "Here's your" or "Sure". Directly output the HTML string only.
Make sure there is nothing before or after the HTML string. ONLY output the HTML string.
Do not explain what is the HTML code about.
Do not declare a new variable, output the HTML string only.
'''
html_out_list.append(chatgpt_chain.predict(human_input=prompt_input2))
extract_path = 'slide_' + video_prompt
os.makedirs(extract_path, exist_ok=True)
num = 1
for html_string in html_out_list:
print(html_string)
with open(f"{extract_path}/slide_{num}.html", "w") as file:
file.write(html_string)
num = num + 1
# Create the directory to extract to if it doesn't exist
os.makedirs(extract_path, exist_ok=True)
# Configuration for imgkit
config = imgkit.config(wkhtmltoimage='/bin/wkhtmltoimage')
# The path to store the images
image_path = os.path.join(extract_path, 'images')
os.makedirs(image_path, exist_ok=True)
# Get the list of HTML files
html_files = sorted([f for f in os.listdir(extract_path) if f.endswith('.html')])
# Dictionary to store the file names and their corresponding images
file_images = {}
# Loop through the HTML files and convert them to images
for html_file in html_files:
# Full path of the HTML file
full_path = os.path.join(extract_path, html_file)
# Image file name
image_file = re.sub('.html$', '.jpg', html_file)
# Full path of the image file
full_image_path = os.path.join(image_path, image_file)
# Convert the HTML to an image
imgkit.from_file(full_path, full_image_path, config=config)
# Store the image file name
file_images[html_file] = image_file
print(file_images)
template = '''
{history}
{human_input}
'''
prompt = PromptTemplate(
input_variables=["history", "human_input"],
template=template
)
chatgpt_chain = LLMChain(
llm=ChatOpenAI(model="gpt-4", temperature=0.5,openai_api_key=OPENAI_API_KEY),
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=10),
)
prompt_input3 = f'''
You are a world expert oracle that knows everything.
You are also an excellent teacher that explains everything succintly and simply like towards a kid.
You are an expert orator and presenter.
You are tasked to create a voiceover for 5 slides.
The slides are formatted in a python list of dictionary objects.
Each dictionary object is a slide.
{slide_str_list}
Input: Python list of dictionary objects
Output: Python list of string objects
The output list consists of string objects.
The voiceover text purpose is a speech presentation of the slide.
The voiceover text should be about the content of each slide but at the same time add additional information to make the presentation funny and engaging.
Each string is a voiceover text of each slide of the python dictionary.
Each voiceover string object should be around 80 words.
Make sure there is only 5 objects in the python list.
Do not declare a new variable, output the python list object only.
Make sure there is nothing before or after the python list object. ONLY output the python list object.
Return the output in a python list format.
Do not say "Here's your" or "Sure". Directly output python list of dictionary object only.
Do not declare a new variable, output the python list of dictionary object only.
'''
voiceover_list = []
voiceover_list=chatgpt_chain.predict(human_input=prompt_input3)
try:
voiceover_list = ast.literal_eval(voiceover_list)
except:
print("Already formatted.")
num = 1
for i in voiceover_list:
file_name = "slide/slide" + f"_{num}" + ".wav"
text_to_wav("en-US-Neural2-F",i, file_name)
print(file_name)
num = num + 1
# Get list of .jpg and .wav files from the correct directories
jpg_files = sorted(glob.glob(f"{extract_path}/images/*.jpg"))
wav_files = sorted(glob.glob(f"{extract_path}/*.wav"))
jpg_files, wav_files
from moviepy.editor import ImageSequenceClip, AudioFileClip, concatenate_videoclips
# Create a list to store the clips
clips = []
# Loop through each jpg and wav file
for jpg_file, wav_file in zip(jpg_files, wav_files):
# Load the audio file and get its duration
audio = AudioFileClip(wav_file)
duration = audio.duration
print(duration)
# Calculate the frame rate as the inverse of the duration
fps = 1 / duration if duration != 0 else 1
# Create a video clip from the image and set its duration and fps to match the audio
clip = ImageSequenceClip([jpg_file], durations=[duration], fps=fps)
# Set the audio of the clip to the wav file
clip = clip.set_audio(audio)
# Add the clip to the list of clips
clips.append(clip)
# Concatenate all clips into a single video
video = concatenate_videoclips(clips)
video_path = f"{extract_path}/output.mp4"
# Write the video to a file
video.write_videofile(video_path)
return video_path
iface = gr.Interface(
fn=prompt_to_video,
inputs="text",
outputs=["file"],
title="Prompt to Video Tutorial",
description="Create a video tutorial to learn about anything!")
iface.launch() |