Spaces:
Sleeping
Sleeping
Dy
commited on
Commit
•
4b05aaa
1
Parent(s):
160dabe
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tiktoken
|
2 |
+
import os
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import gradio as gr
|
5 |
+
from langchain import OpenAI, ConversationChain, LLMChain, PromptTemplate
|
6 |
+
from langchain.memory import ConversationBufferWindowMemory
|
7 |
+
import openai
|
8 |
+
import requests
|
9 |
+
from langchain.chat_models import ChatOpenAI
|
10 |
+
import ast
|
11 |
+
import re
|
12 |
+
import json
|
13 |
+
import tempfile
|
14 |
+
import collectionstions
|
15 |
+
|
16 |
+
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
|
17 |
+
|
18 |
+
|
19 |
+
def save_webpage_as_html(url):
|
20 |
+
headers = {
|
21 |
+
'authority': 'ms-mt--api-web.spain.advgo.net',
|
22 |
+
'sec-ch-ua': '" Not;A Brand";v="99", "Google Chrome";v="91", "Chromium";v="91"',
|
23 |
+
'accept': 'application/json, text/plain, */*',
|
24 |
+
'x-adevinta-channel': 'web-desktop',
|
25 |
+
'x-schibsted-tenant': 'coches',
|
26 |
+
'sec-ch-ua-mobile': '?0',
|
27 |
+
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36',
|
28 |
+
'content-type': 'application/json;charset=UTF-8',
|
29 |
+
'origin': 'https://www.coches.net',
|
30 |
+
'sec-fetch-site': 'cross-site',
|
31 |
+
'sec-fetch-mode': 'cors',
|
32 |
+
'sec-fetch-dest': 'empty',
|
33 |
+
'referer': 'https://www.coches.net/',
|
34 |
+
'accept-language': 'en-US,en;q=0.9,es;q=0.8',
|
35 |
+
}
|
36 |
+
|
37 |
+
response = requests.get(url, headers=headers)
|
38 |
+
|
39 |
+
# Check if the request was successful
|
40 |
+
if response.status_code != 200:
|
41 |
+
print(f"Failed to get the webpage: {url}")
|
42 |
+
return
|
43 |
+
|
44 |
+
# Create a BeautifulSoup object and specify the parser
|
45 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
46 |
+
|
47 |
+
# Create a dictionary to hold the result
|
48 |
+
result = collections.defaultdict(list)
|
49 |
+
|
50 |
+
# Find all tags that contain text (you may need to add more tags to this list)
|
51 |
+
for tag in soup.find_all(['li', 'ol']):
|
52 |
+
result[tag.name].append(tag.get_text(strip=True))
|
53 |
+
|
54 |
+
return result
|
55 |
+
|
56 |
+
output_json_format = '''
|
57 |
+
{
|
58 |
+
"category": "root_category",
|
59 |
+
"subcategories": [
|
60 |
+
{
|
61 |
+
"category": "node_category",
|
62 |
+
"subcategories": [
|
63 |
+
{
|
64 |
+
"category": "node_category",
|
65 |
+
"subcategories": [category1, category2, ...]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"category": "node_category",
|
69 |
+
"subcategories": [category1, category2, ...]
|
70 |
+
}
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"category": "node_category",
|
75 |
+
"subcategories": [category1, category2, ...]
|
76 |
+
}
|
77 |
+
]
|
78 |
+
}
|
79 |
+
|
80 |
+
'''
|
81 |
+
|
82 |
+
empty_json = {
|
83 |
+
"category": "root_category",
|
84 |
+
"subcategories": [
|
85 |
+
]
|
86 |
+
}
|
87 |
+
|
88 |
+
def get_taxanomy_from_url(url):
|
89 |
+
|
90 |
+
url_dict = save_webpage_as_html(url)
|
91 |
+
|
92 |
+
json_input = str(url_dict)
|
93 |
+
|
94 |
+
template = '''
|
95 |
+
{history}
|
96 |
+
{human_input}
|
97 |
+
'''
|
98 |
+
prompt = PromptTemplate(
|
99 |
+
input_variables=["history", "human_input"],
|
100 |
+
template=template
|
101 |
+
)
|
102 |
+
|
103 |
+
chatgpt_chain = LLMChain(
|
104 |
+
llm=ChatOpenAI(model="gpt-4", temperature=0,openai_api_key=OPENAI_API_KEY),
|
105 |
+
prompt=prompt,
|
106 |
+
verbose=True,
|
107 |
+
memory=ConversationBufferWindowMemory(k=10),
|
108 |
+
)
|
109 |
+
|
110 |
+
prompt_input2 = f'''
|
111 |
+
You are an expert ecommerce product taxanomy analyst.
|
112 |
+
You are equiped with vast knowledge of taxanomy, ontology and everything related to it.
|
113 |
+
You fit have deep expertise in the domain of: "An ontology identifies and distinguishes concepts and their relationships;
|
114 |
+
it describes content and relationships.
|
115 |
+
A taxonomy formalizes the hierarchical relationships among concepts and specifies the term to be used to refer to each;
|
116 |
+
it prescribes structure and terminology."
|
117 |
+
|
118 |
+
You have a task to extract taxanomy from a python dictionary of an extracted html page of an ecommerce website.
|
119 |
+
|
120 |
+
Here is the input python dictionary:
|
121 |
+
{json_input}
|
122 |
+
|
123 |
+
Here is the output json format:
|
124 |
+
{output_json_format}
|
125 |
+
|
126 |
+
From the input python dictionary, extract all available products under the li and ol key and create the output json taxanomy.
|
127 |
+
Think step by step.
|
128 |
+
Place the products in categories and subcategories accordingly.
|
129 |
+
Organize all the products to fit the output json format.
|
130 |
+
|
131 |
+
The output should follow a python dictionary..
|
132 |
+
Do not declare a new variable, output the python dictionary json object only.
|
133 |
+
Do not output "The taxonomy extracted from the given python list can be represented as follows:"
|
134 |
+
Do not provide extra information. Directly output the python dictionary only.
|
135 |
+
Do not insert any string before or after the python dictionary.
|
136 |
+
Output python dictionary only.
|
137 |
+
'''
|
138 |
+
encoding = tiktoken.encoding_for_model("gpt-4")
|
139 |
+
encoded_prompt2 = encoding.encode(prompt_input2)[:8000]
|
140 |
+
prompt_input2 = encoding.decode(encoded_prompt2)
|
141 |
+
|
142 |
+
json_dict = ""
|
143 |
+
while type(json_dict) != dict:
|
144 |
+
json_taxanomy_output=chatgpt_chain.predict(human_input=prompt_input2)
|
145 |
+
json_dict = ast.literal_eval(json_taxanomy_output)
|
146 |
+
|
147 |
+
file_name = "url_temp.json"
|
148 |
+
|
149 |
+
# Save the modified data back to the file
|
150 |
+
with open(file_name, 'w') as json_file:
|
151 |
+
json.dump(json_dict, json_file, indent=4) # 'indent' parameter makes the output more readable
|
152 |
+
|
153 |
+
return(file_name)
|
154 |
+
|
155 |
+
|
156 |
+
def expand_taxanomy(json_dict, num_layers, num_items, category_type):
|
157 |
+
|
158 |
+
num_layers = str(int(num_layers))
|
159 |
+
num_items = str(int(num_items))
|
160 |
+
json_input = str(json_dict)
|
161 |
+
|
162 |
+
template = '''
|
163 |
+
{history}
|
164 |
+
{human_input}
|
165 |
+
'''
|
166 |
+
prompt = PromptTemplate(
|
167 |
+
input_variables=["history", "human_input"],
|
168 |
+
template=template
|
169 |
+
)
|
170 |
+
|
171 |
+
chatgpt_chain = LLMChain(
|
172 |
+
llm=ChatOpenAI(model="gpt-4", temperature=0,openai_api_key=OPENAI_API_KEY),
|
173 |
+
prompt=prompt,
|
174 |
+
verbose=True,
|
175 |
+
memory=ConversationBufferWindowMemory(k=10),
|
176 |
+
)
|
177 |
+
|
178 |
+
prompt_input1 = f'''
|
179 |
+
You are an expert ecommerce product taxanomy analyst.
|
180 |
+
You are equiped with vast knowledge of taxanomy, ontology and everything related to it.
|
181 |
+
You fit have deep expertise in the domain of: "An ontology identifies and distinguishes concepts and their relationships;
|
182 |
+
it describes content and relationships.
|
183 |
+
A taxonomy formalizes the hierarchical relationships among concepts and specifies the term to be used to refer to each;
|
184 |
+
it prescribes structure and terminology."
|
185 |
+
|
186 |
+
You have a task to expand a taxanomy that is formatted in a json file.
|
187 |
+
The taxanomy tree should be {num_layers} layer deep with a total of {num_items} items.
|
188 |
+
The category type is {category_type}.
|
189 |
+
|
190 |
+
Here is the input json file:
|
191 |
+
{json_input}
|
192 |
+
|
193 |
+
Here is the output json format:
|
194 |
+
{output_json_format}
|
195 |
+
|
196 |
+
Expand the taxanomy of the input json file.
|
197 |
+
Find subcategories that fits each category.
|
198 |
+
Expand the leafs of the taxanomy tree.
|
199 |
+
Go deeper. Think step by step.
|
200 |
+
Find all subcategories and output it as a json object.
|
201 |
+
|
202 |
+
The output should follow a python dictionary..
|
203 |
+
Do not declare a new variable, output the python dictionary json object only.
|
204 |
+
Do not provide extra information. Directly output the python dictionary only.
|
205 |
+
'''
|
206 |
+
|
207 |
+
encoding = tiktoken.encoding_for_model("gpt-4")
|
208 |
+
encoded_prompt1 = encoding.encode(prompt_input1)[:8000]
|
209 |
+
prompt_input1 = encoding.decode(encoded_prompt1)
|
210 |
+
|
211 |
+
json_taxanomy_output=chatgpt_chain.predict(human_input=prompt_input1)
|
212 |
+
json_dict = ast.literal_eval(json_taxanomy_output)
|
213 |
+
|
214 |
+
return(json_dict)
|
215 |
+
|
216 |
+
|
217 |
+
def add_nodes_edges(graph, data, parent=None):
|
218 |
+
new_name = data['category']
|
219 |
+
|
220 |
+
# create node
|
221 |
+
graph.node(new_name)
|
222 |
+
|
223 |
+
if parent:
|
224 |
+
# create an edge between parent and child
|
225 |
+
graph.edge(parent, new_name)
|
226 |
+
|
227 |
+
# iterate over subcategories (if they exist)
|
228 |
+
for subcat in data.get('subcategories', []):
|
229 |
+
# subcategories can be either strings or new dicts
|
230 |
+
if isinstance(subcat, str):
|
231 |
+
# create node for the string subcategory
|
232 |
+
graph.node(subcat)
|
233 |
+
# create edge between the parent category and this subcategory
|
234 |
+
graph.edge(new_name, subcat)
|
235 |
+
else:
|
236 |
+
# if subcat is a dict, repeat the process with subcat as the parent
|
237 |
+
add_nodes_edges(graph, subcat, new_name)
|
238 |
+
|
239 |
+
def visualize_json(data):
|
240 |
+
|
241 |
+
graph = graphviz.Digraph(graph_attr={'rankdir': 'LR'}) # Added 'LR' for left to right graph
|
242 |
+
|
243 |
+
# Add nodes and edges
|
244 |
+
add_nodes_edges(graph, data)
|
245 |
+
|
246 |
+
# Visualize the graph
|
247 |
+
#graph.view()
|
248 |
+
return graph
|
249 |
+
|
250 |
+
def get_file(json_file):
|
251 |
+
|
252 |
+
try:
|
253 |
+
print("loading json file")
|
254 |
+
print("temp_file", json_file.name)
|
255 |
+
file_path = json_file.name
|
256 |
+
|
257 |
+
with open(file_path, 'r') as json_file:
|
258 |
+
data = json.load(json_file)
|
259 |
+
except:
|
260 |
+
print("using temp json")
|
261 |
+
file_path = 'temp.json'
|
262 |
+
|
263 |
+
with open(file_path, 'r') as json_file:
|
264 |
+
data = json.load(json_file)
|
265 |
+
|
266 |
+
try:
|
267 |
+
os.remove('graph.png')
|
268 |
+
print("graph removed")
|
269 |
+
except:
|
270 |
+
print("no existing graph")
|
271 |
+
|
272 |
+
graph = visualize_json(data)
|
273 |
+
# Render the graph as a PNG file
|
274 |
+
graph.format = 'png'
|
275 |
+
graph = graph.render(filename='graph', cleanup=True)
|
276 |
+
|
277 |
+
return graph
|
278 |
+
|
279 |
+
def modify_json(json_input, num_layers, num_items, category_type):
|
280 |
+
|
281 |
+
print("json_input first", json_input)
|
282 |
+
if json_input is not None:
|
283 |
+
|
284 |
+
file_path = json_input.name
|
285 |
+
# Open the file and load the JSON data
|
286 |
+
with open(file_path, 'r') as json_file:
|
287 |
+
data = json.load(json_file)
|
288 |
+
else:
|
289 |
+
data = empty_json
|
290 |
+
data["category"] = category_type
|
291 |
+
|
292 |
+
# Directly from dictionary
|
293 |
+
file_path = 'temp.json'
|
294 |
+
with open(file_path, 'w') as outfile:
|
295 |
+
json.dump(data, outfile)
|
296 |
+
|
297 |
+
json_dict = expand_taxanomy(data, num_layers, num_items,category_type)
|
298 |
+
|
299 |
+
print("json_dict", json_dict)
|
300 |
+
|
301 |
+
# Save the modified data back to the file
|
302 |
+
with open(file_path, 'w') as json_file:
|
303 |
+
json.dump(json_dict, json_file, indent=4) # 'indent' parameter makes the output more readable
|
304 |
+
|
305 |
+
return(file_path)
|
306 |
+
|
307 |
+
def print_num(a,b):
|
308 |
+
return(int(a), int(b))
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
with gr.Blocks() as demo:
|
313 |
+
|
314 |
+
gr.Markdown(
|
315 |
+
"""
|
316 |
+
# Auto Taxanomy App
|
317 |
+
Upload a JSON taxanomy file or generate from scratch.
|
318 |
+
""")
|
319 |
+
with gr.Row():
|
320 |
+
with gr.Column():
|
321 |
+
json_file = gr.File(label="Upload JSON here.")
|
322 |
+
num_layers = gr.Number(label="Number of layers")
|
323 |
+
num_items = gr.Number(label="Number of items")
|
324 |
+
category_type = gr.Text(label="Category type")
|
325 |
+
modify_btn = gr.Button(value="Generate")
|
326 |
+
render_btn = gr.Button(value="Render")
|
327 |
+
print_btn = gr.Button(value="Print")
|
328 |
+
with gr.Column():
|
329 |
+
input_url = gr.Text(label="Insert URL")
|
330 |
+
geturl_btn = gr.Button(value="Get JSON Taxanomy")
|
331 |
+
#url_json_file = gr.File(label="URL JSON file.")
|
332 |
+
rendered_tree = gr.Image(label="Taxanomy Tree.")
|
333 |
+
output_file = gr.File(label="Ouput JSON file.")
|
334 |
+
print_text = gr.Text(label="Printing")
|
335 |
+
|
336 |
+
modify_btn.click(modify_json, inputs=[json_file, num_layers, num_items, category_type], outputs=output_file)
|
337 |
+
render_btn.click(get_file, inputs=json_file, outputs=rendered_tree)
|
338 |
+
print_btn.click(print_num, inputs=[num_layers,num_items], outputs=print_text)
|
339 |
+
geturl_btn.click(get_taxanomy_from_url, inputs=input_url, outputs=output_file)
|
340 |
+
|
341 |
+
demo.launch()
|