Spaces:
Runtime error
Runtime error
import openai | |
import requests | |
import os | |
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeAudioClip | |
from moviepy.audio.io.AudioFileClip import AudioFileClip | |
import cv2 # We're using OpenCV to read video | |
import base64 | |
import time | |
import io | |
import tempfile | |
import numpy as np | |
import gradio as gr | |
OPENAI_API_KEY = os.environ['OPENAI_API_KEY'] | |
ELEVEN_LABS_API = os.environ['ELEVEN_LABS_API'] | |
PASSWORD_AUTH = os.environ['PASSWORD_AUTH'] | |
# Set your OpenAI API key here | |
openai.api_key = OPENAI_API_KEY | |
def video_to_frames(video_file_path): | |
if type(video_file_path) == str: | |
video_filename = video_file_path | |
else: | |
video_filename = video_file_path.name | |
video_duration = VideoFileClip(video_filename).duration | |
video = cv2.VideoCapture(video_filename) | |
base64Frames = [] | |
frame_count = 0 | |
while video.isOpened(): | |
success, frame = video.read() | |
if not success: | |
break | |
_, buffer = cv2.imencode(".jpg", frame) | |
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) | |
frame_count += 1 | |
if frame_count % 30 == 0: | |
print("30 frames added.") | |
video.release() | |
print(len(base64Frames), "frames read.") | |
return base64Frames, video_filename, video_duration | |
def text_to_speech(text, video_filename, voice_type="feminine-american", API_KEY = ELEVEN_LABS_API): | |
CHUNK_SIZE = 2048 | |
voice_id = '21m00Tcm4TlvDq8ikWAM' | |
BASE_URL = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}" | |
headers = { | |
"Accept": "audio/mpeg", | |
"Content-Type": "application/json", | |
"xi-api-key": API_KEY | |
} | |
if voice_type == "masculine-american": | |
MODEL_ID = "eleven_monolingual_v1" | |
voice_id = 'VR6AewLTigWG4xSOukaG' | |
BASE_URL = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}" | |
chunk = text | |
data = { | |
"text": chunk, | |
"model_id": MODEL_ID, | |
"voice_settings": { | |
"stability": 0.5, | |
"similarity_boost": 0.5 | |
} | |
} | |
elif voice_type == "feminine-british": | |
MODEL_ID = "eleven_monolingual_v1" | |
voice_id = 'ThT5KcBeYPX3keUQqHPh' | |
BASE_URL = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}" | |
chunk = text | |
data = { | |
"text": chunk, | |
"model_id": MODEL_ID, | |
"voice_settings": { | |
"stability": 0.5, | |
"similarity_boost": 0.5 | |
} | |
} | |
elif voice_type == "masculine-british": | |
MODEL_ID = "eleven_monolingual_v1" | |
voice_id = 'Yko7PKHZNXotIFUBG7I9' | |
BASE_URL = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}" | |
chunk = text | |
data = { | |
"text": chunk, | |
"model_id": MODEL_ID, | |
"voice_settings": { | |
"stability": 0.5, | |
"similarity_boost": 0.5 | |
} | |
} | |
else: | |
MODEL_ID = "eleven_monolingual_v1" | |
voice_id = '21m00Tcm4TlvDq8ikWAM' | |
BASE_URL = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}" | |
chunk = text | |
data = { | |
"text": chunk, | |
"model_id": MODEL_ID, | |
"voice_settings": { | |
"stability": 0.3, | |
"similarity_boost": 0.5 | |
} | |
} | |
# Send the POST request to the API | |
response = requests.post(BASE_URL, json=data, headers=headers) | |
# Check if the response is OK | |
if response.status_code == 200: | |
# Write the chunk to an mp3 file in the directory | |
# Save audio to a specified file | |
audio_filename = 'testing_file.mp3' | |
with open(audio_filename, 'wb') as file: | |
for chunk in response.iter_content(chunk_size=1024 * 1024): | |
file.write(chunk) | |
print(f'Saved {audio_filename}') | |
else: | |
print(f'Error: Received response code {response.status_code}') | |
return audio_filename | |
def frames_to_story(base64Frames, prompt, video_duration): | |
fps = int(len(base64Frames) / video_duration) | |
frame_cut_thres = fps | |
print("Cutting at", frame_cut_thres) | |
list_of_dictionaries = list(map(lambda x: { | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{x}", | |
"detail": "low" | |
} | |
}, base64Frames[0::frame_cut_thres])) | |
PROMPT_MESSAGES = [ | |
{ | |
"role": "user", | |
"content": [ | |
prompt, | |
*list_of_dictionaries, | |
], | |
}, | |
] | |
params = { | |
"model": "gpt-4-vision-preview", | |
"messages": PROMPT_MESSAGES, | |
#"api_key": OPENAI_API_KEY, | |
#"headers": {"Openai-Version": "2020-11-07"}, | |
"max_tokens": 500, | |
} | |
result = openai.chat.completions.create(**params) | |
print(result.choices[0].message.content) | |
return result.choices[0].message.content | |
def prompt_type(prompt_user, prompt_input, video_duration): | |
prompt_documentary = ''' | |
You are a world class documentary narration script writer. | |
Based on the frames in the video, write a captivating voiceover for it. | |
Write it with close observation of each frame. | |
Observe the suddent change in movement of each frame and narrate about it. | |
''' | |
prompt_how_to = ''' | |
You are an expert narrator that specializes in writing narration scripts for "how-to" videos. | |
Your goal is to write a script so that the audience can follow instructions from the video. | |
Pay attention to where the mouse and tap cursor is and navigate based on the sequence of each frame. | |
Remember to narrate something useful. Narrate something that the audience can understand to take an action. | |
''' | |
prompt_sports_commentator = ''' | |
You are a professional sports commentator that can comment for all kinds of sports including e-sports. | |
Your goal is to write a script that is exciting and make the audience's heart beat fast. | |
Pay attention to what the characters of the players are doing in each frame and narrate their actions. | |
Remember to narrate something exciting and nail-biting. Keep the audience on their toes and wanting to know more. | |
Add a lot of exclamation mark and emotions into the voiceover script. | |
''' | |
if prompt_input == "how-to": | |
prompt_input = prompt_how_to | |
mul_factor = 1.6 | |
elif prompt_input == "documentary": | |
prompt_input = prompt_documentary | |
mul_factor = 2 | |
elif prompt_input == "sports-commentator": | |
prompt_input = prompt_sports_commentator | |
mul_factor = 1.5 | |
elif prompt_input == "custom-prompt": | |
prompt_input = prompt_user | |
mul_factor = 2 | |
else: | |
prompt_input = "" | |
mul_factor = 2 | |
est_word_count = int(video_duration * mul_factor) | |
word_lim_prompt = f'''This video is EXACTLY {video_duration} seconds long, | |
make sure the voiceover narration script to be EXACTLY {est_word_count} words. | |
Do not go over {est_word_count} for the output script. | |
''' | |
initial_prompt = ''' | |
These are a sequence of frames for a short video. | |
You are an expert voiceover script writer. The voiceover is to help the audience and viewer. | |
Write a voiceover for the video by carefully analyzing each frame. | |
Make sure there is coherence between each frame. | |
''' | |
final_prompt = word_lim_prompt + initial_prompt + prompt_user + prompt_input + "\n" + word_lim_prompt | |
return(final_prompt) | |
def merge_audio_video(video_filename, audio_filename, output_filename, original_audio_volume=0.3): | |
print("Merging audio and video...") | |
print("Video filename:", video_filename) | |
print("Audio filename:", audio_filename) | |
# Load the video file | |
video_clip = VideoFileClip(video_filename) | |
try:# Reduce the volume of the original audio | |
original_audio = video_clip.audio.volumex(original_audio_volume) | |
# Load the new audio file | |
new_audio_clip = AudioFileClip(audio_filename) | |
# Mix the adjusted original audio with the new audio | |
mixed_audio = CompositeAudioClip([original_audio, new_audio_clip]) | |
# Set the mixed audio as the audio of the video clip | |
final_clip = video_clip.set_audio(mixed_audio) | |
# Write the result to a file | |
final_clip.write_videofile(output_filename, codec='libx264', audio_codec='aac') | |
# Close the clips | |
video_clip.close() | |
new_audio_clip.close() | |
except: | |
print("No volume") | |
# Set the audio of the video clip | |
final_clip = video_clip.set_audio(audio_filename) | |
# Write the result to a file | |
final_clip.write_videofile(output_filename, codec='libx264', audio_codec='aac') | |
# Close the clips | |
video_clip.close() | |
new_audio_clip.close() | |
# Return the path to the new video file | |
return output_filename | |
# Rest of your imports and functions remain the same | |
def process_video(uploaded_file, prompt_user, prompt_input, voice_type="feminine-american"): | |
if type(uploaded_file) == str: | |
video_filename = uploaded_file | |
else: | |
video_filename = uploaded_file.name | |
print("video", video_filename) | |
base64Frames, video_filename, video_duration = video_to_frames(video_filename) | |
final_prompt = prompt_type(prompt_user, prompt_input, video_duration) | |
print(final_prompt) | |
text = frames_to_story(base64Frames, final_prompt, video_duration) | |
audio_filename = text_to_speech(text, video_filename, voice_type) | |
print("audio", audio_filename) | |
# Merge audio and video | |
output_video_filename = os.path.splitext(video_filename)[0] + '_output.mp4' | |
final_video_filename = merge_audio_video(video_filename, audio_filename, output_video_filename) | |
print("final", final_video_filename) | |
if type(uploaded_file) != str: | |
os.unlink(video_filename) | |
os.unlink(audio_filename) | |
return final_video_filename, text | |
# Rest of your imports and functions remain the same | |
def regenerate(uploaded_file, edited_script, voice_type="feminine-american"): | |
if type(uploaded_file) == str: | |
video_filename = uploaded_file | |
else: | |
video_filename = uploaded_file.name | |
print("video", video_filename) | |
# Generate audio from text | |
audio_filename = text_to_speech(edited_script, video_filename, voice_type) | |
print("audio", audio_filename) | |
# Merge audio and video | |
output_video_filename = os.path.splitext(video_filename)[0] + '_output.mp4' | |
final_video_filename = merge_audio_video(video_filename, audio_filename, output_video_filename) | |
print("final", final_video_filename) | |
if type(uploaded_file) != str: | |
os.unlink(video_filename) | |
os.unlink(audio_filename) | |
return final_video_filename, edited_script | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Auto Narrator | |
Upload a video and provide a prompt to generate a narration. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
video_input = gr.Video(label="Upload Video") | |
prompt_user = gr.Textbox(label="Enter your prompt") | |
prompt_input = gr.Dropdown(['how-to', 'documentary', 'sports-commentator', 'custom-prompt'], label="Choose Your Narration") | |
voice_type = gr.Dropdown(['masculine-american', 'masculine-british', 'feminine-american', 'feminine-british'], label="Choose Your Voice") | |
generate_btn = gr.Button(value="Generate") | |
#render_btn = gr.Button(value="Render") | |
#print_btn = gr.Button(value="Print") | |
with gr.Column(): | |
output_file = gr.Video(label="Ouput video file.") | |
output_voiceover = gr.Textbox(label="Generated Text") | |
regenerate_btn = gr.Button(value="Re-generate") | |
#print_text = gr.Text(label="Printing") | |
generate_btn.click(process_video, inputs=[video_input, prompt_user, prompt_input, voice_type], outputs=[output_file,output_voiceover]) | |
regenerate_btn.click(regenerate, inputs=[video_input, output_voiceover, voice_type], outputs=[output_file,output_voiceover]) | |
demo.launch(auth=("admin", PASSWORD_AUTH)) |