File size: 14,284 Bytes
8a7e2bc
01b92a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b1428d
 
 
 
 
 
 
 
 
 
 
 
 
01b92a0
7017f26
4b1428d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
084b7a7
4b1428d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca0a075
4b1428d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf6325
 
 
 
 
 
 
4b1428d
 
cdf6325
4b1428d
 
 
 
 
 
 
 
 
 
 
cdf6325
4b1428d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b92a0
4b1428d
01b92a0
 
 
4b1428d
 
 
 
 
 
 
01b92a0
4b1428d
 
 
 
cdf6325
01b92a0
4b1428d
 
7017f26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#update
import os
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
ELEVEN_LABS_API = os.environ['ELEVEN_LABS_API']
PASSWORD_AUTH = os.environ['PASSWORD_AUTH']

from elevenlabs import clone, generate, play, save
from elevenlabs import set_api_key
set_api_key(ELEVEN_LABS_API)

def process_video_custom_voice(uploaded_file, prompt_user, prompt_input, custom_audio, voice_prompt):
    
    if type(uploaded_file) == str:
        video_filename = uploaded_file
    else:
        video_filename = uploaded_file.name
    print("video", video_filename)
        
    base64Frames, video_filename, video_duration = video_to_frames(video_filename)

    final_prompt = prompt_type(prompt_user, prompt_input, video_duration)
    print(final_prompt)
    text = frames_to_story(base64Frames, final_prompt, video_duration)
    
    if type(custom_audio) == str:
        custom_audio_filename = custom_audio
    else:
        custom_audio_filename = custom_audio.name
    print("custom audio", custom_audio_filename)

    voice = clone(
        name="Custom Voice",
        description=f"{voice_prompt}", # Optional
        files=[custom_audio_filename],
    )

    audio = generate(text=text, voice=voice)
    save(audio, custom_audio_filename)
    
    audio_filename = custom_audio_filename

    # Merge audio and video
    output_video_filename = os.path.splitext(video_filename)[0] + '_output.mp4'
    final_video_filename = merge_audio_video(video_filename, audio_filename, output_video_filename)
    print("final", final_video_filename)

    if type(uploaded_file) != str:
        os.unlink(video_filename)
        os.unlink(audio_filename)
    
    return final_video_filename, text


import openai
import requests
import os
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeAudioClip
from moviepy.audio.io.AudioFileClip import AudioFileClip
import cv2  # We're using OpenCV to read video
import base64
import time
import io
import tempfile
import numpy as np
import gradio as gr



# Set your OpenAI API key here
openai.api_key = OPENAI_API_KEY

def video_to_frames(video_file_path):
    
    if type(video_file_path) == str:
        video_filename = video_file_path
    else:
        video_filename = video_file_path.name


    video_duration = VideoFileClip(video_filename).duration

    video = cv2.VideoCapture(video_filename)
    base64Frames = []
    
    frame_count = 0
    while video.isOpened():
        success, frame = video.read()
        if not success:
            break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        frame_count += 1
        if frame_count % 30 == 0:
            print("30 frames added.")

    video.release()
    print(len(base64Frames), "frames read.")
    return base64Frames, video_filename, video_duration


def text_to_speech(text, video_filename, voice_type="feminine-american", API_KEY = ELEVEN_LABS_API):
    
    CHUNK_SIZE = 2048
    voice_id = '21m00Tcm4TlvDq8ikWAM'
    BASE_URL = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
    
    
    headers = {
        "Accept": "audio/mpeg",
        "Content-Type": "application/json",
        "xi-api-key": API_KEY
    }
    
    if voice_type == "masculine-american":
        
        MODEL_ID = "eleven_monolingual_v1"
        voice_id = 'VR6AewLTigWG4xSOukaG'
        BASE_URL = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
        chunk = text
        data = {
            "text": chunk,
            "model_id": MODEL_ID,
            "voice_settings": {
                "stability": 0.5,
                "similarity_boost": 0.5
            }
        }
        
    elif voice_type == "feminine-british":
        
        MODEL_ID = "eleven_monolingual_v1"
        voice_id = 'ThT5KcBeYPX3keUQqHPh'
        BASE_URL = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
        chunk = text
        data = {
            "text": chunk,
            "model_id": MODEL_ID,
            "voice_settings": {
                "stability": 0.5,
                "similarity_boost": 0.5
            }
        }
    elif voice_type == "masculine-british":
        
        MODEL_ID = "eleven_monolingual_v1"
        voice_id = 'Yko7PKHZNXotIFUBG7I9'
        BASE_URL = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
        chunk = text
        data = {
            "text": chunk,
            "model_id": MODEL_ID,
            "voice_settings": {
                "stability": 0.5,
                "similarity_boost": 0.5
            }
        }
    else:
        
        MODEL_ID = "eleven_monolingual_v1"
        voice_id = 'jsCqWAovK2LkecY7zXl4'
        BASE_URL = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
        chunk = text
        data = {
            "text": chunk,
            "model_id": MODEL_ID,
            "voice_settings": {
                "stability": 0.3,
                "similarity_boost": 0.5
            }
        }

    # Send the POST request to the API
    response = requests.post(BASE_URL, json=data, headers=headers)

    # Check if the response is OK
    if response.status_code == 200:
        # Write the chunk to an mp3 file in the directory
        # Save audio to a specified file
        audio_filename = 'testing_file.mp3'
        with open(audio_filename, 'wb') as file:
            for chunk in response.iter_content(chunk_size=1024 * 1024):
                file.write(chunk)

        print(f'Saved {audio_filename}')
    else:
        print(f'Error: Received response code {response.status_code}')

    return audio_filename

def frames_to_story(base64Frames, prompt, video_duration):
    
    fps = int(len(base64Frames) / video_duration)
    
    frame_cut_thres = fps
    print("Cutting at", frame_cut_thres)
    
    list_of_dictionaries = list(map(lambda x: {
        "type": "image_url",
        "image_url": {
            "url": f"data:image/jpeg;base64,{x}",
            "detail": "low"
        }
    }, base64Frames[0::frame_cut_thres])) 
    
    PROMPT_MESSAGES = [
        {
            "role": "user",
            "content": [
                prompt,
                *list_of_dictionaries,
            ],
        },
    ]
    params = {
        "model": "gpt-4-vision-preview",
        "messages": PROMPT_MESSAGES,
        #"api_key": OPENAI_API_KEY,
        #"headers": {"Openai-Version": "2020-11-07"},
        "max_tokens": 500,
        
    }

    result = openai.chat.completions.create(**params)
    print(result.choices[0].message.content)
    return result.choices[0].message.content


def prompt_type(prompt_user, prompt_input, video_duration):

    prompt_documentary = '''
    You are a world class documentary narration script writer.
    Based on the frames in the video, write a captivating voiceover for it.
    Write it with close observation of each frame.
    Observe the suddent change in movement of each frame and narrate about it.
    '''

    prompt_how_to = '''
    You are an expert narrator that specializes in writing narration scripts for "how-to" videos.
    Your goal is to write a script so that the audience can follow instructions from the video.
    Pay attention to where the mouse and tap cursor is and navigate based on the sequence of each frame.
    Remember to narrate something useful.  Narrate something that the audience can understand to take an action.
    '''

    prompt_sports_commentator = '''
    You are a professional sports commentator that can comment for all kinds of sports including e-sports.
    Your goal is to write a script that is exciting and make the audience's heart beat fast.
    Pay attention to what the characters of the players are doing in each frame and narrate their actions.
    Remember to narrate something exciting and nail-biting.  Keep the audience on their toes and wanting to know more.
    Add a lot of exclamation mark and emotions into the voiceover script.
    '''
    
    if prompt_input == "how-to":
        prompt_input = prompt_how_to
        mul_factor = 1.6
    elif prompt_input == "documentary":
        prompt_input = prompt_documentary
        mul_factor = 2
    elif prompt_input == "sports-commentator":
        prompt_input = prompt_sports_commentator
        mul_factor = 1.5
    elif prompt_input == "custom-prompt":
        prompt_input = prompt_user
        mul_factor = 2
    else:
        prompt_input = ""
        mul_factor = 2

    est_word_count = int(video_duration * mul_factor)
    
    word_lim_prompt = f'''This video is EXACTLY {video_duration} seconds long, 
    make sure the voiceover narration script to be EXACTLY {est_word_count} words. 
    Do not go over {est_word_count} for the output script.
    '''

    initial_prompt = '''
    These are a sequence of frames for a short video.
    You are an expert voiceover script writer.  The voiceover is to help the audience and viewer.
    Write a voiceover for the video by carefully analyzing each frame.
    Make sure there is coherence between each frame.
    '''
    final_prompt = word_lim_prompt + initial_prompt + prompt_user + prompt_input + "\n" + word_lim_prompt
    
    return(final_prompt)


def merge_audio_video(video_filename, audio_filename, output_filename, original_audio_volume=0.3):
    print("Merging audio and video...")
    print("Video filename:", video_filename)
    print("Audio filename:", audio_filename)

    # Load the video file
    video_clip = VideoFileClip(video_filename)

    try:# Reduce the volume of the original audio
        original_audio = video_clip.audio.volumex(original_audio_volume)
        
        # Load the new audio file
        new_audio_clip = AudioFileClip(audio_filename)

        # Mix the adjusted original audio with the new audio
        mixed_audio = CompositeAudioClip([original_audio, new_audio_clip])

        # Set the mixed audio as the audio of the video clip
        final_clip = video_clip.set_audio(mixed_audio)

        # Write the result to a file
        final_clip.write_videofile(output_filename, codec='libx264', audio_codec='aac')

        # Close the clips
        video_clip.close()
        new_audio_clip.close()
        
    except:
        print("No volume")
        
        # Set the audio of the video clip
        final_clip = video_clip.set_audio(audio_filename)

        # Write the result to a file
        final_clip.write_videofile(output_filename, codec='libx264', audio_codec='aac')

        # Close the clips
        video_clip.close()
        new_audio_clip.close()
        

    # Return the path to the new video file
    return output_filename



# Rest of your imports and functions remain the same

def process_video(uploaded_file, prompt_user, prompt_input, voice_type="feminine-american"):
    if type(uploaded_file) == str:
        video_filename = uploaded_file
    else:
        video_filename = uploaded_file.name
    print("video", video_filename)
        
    base64Frames, video_filename, video_duration = video_to_frames(video_filename)

    final_prompt = prompt_type(prompt_user, prompt_input, video_duration)
    print(final_prompt)
    text = frames_to_story(base64Frames, final_prompt, video_duration)

    audio_filename = text_to_speech(text, video_filename, voice_type)
    print("audio", audio_filename)

    # Merge audio and video
    output_video_filename = os.path.splitext(video_filename)[0] + '_output.mp4'
    final_video_filename = merge_audio_video(video_filename, audio_filename, output_video_filename)
    print("final", final_video_filename)

    if type(uploaded_file) != str:
        os.unlink(video_filename)
        os.unlink(audio_filename)
    
    return final_video_filename, text

# Rest of your imports and functions remain the same

def regenerate(uploaded_file, edited_script, voice_type="feminine-american"):
    
    if type(uploaded_file) == str:
        video_filename = uploaded_file
    else:
        video_filename = uploaded_file.name
    print("video", video_filename)
    
    # Generate audio from text
    audio_filename = text_to_speech(edited_script, video_filename, voice_type)
    print("audio", audio_filename)

    # Merge audio and video
    output_video_filename = os.path.splitext(video_filename)[0] + '_output.mp4'
    final_video_filename = merge_audio_video(video_filename, audio_filename, output_video_filename)
    print("final", final_video_filename)

    if type(uploaded_file) != str:
        os.unlink(video_filename)
        os.unlink(audio_filename)
    
    return final_video_filename, edited_script

with gr.Blocks() as demo:
    
    gr.Markdown(
    """
    # Auto Narrator
    Upload a video and provide a prompt to generate a narration.
    """)
    with gr.Row():
        with gr.Column():

            video_input = gr.Video(label="Upload Video")
            prompt_user = gr.Textbox(label="Enter your prompt")
            prompt_input = gr.Dropdown(['how-to', 'documentary', 'sports-commentator', 'custom-prompt'], label="Choose Your Narration")
            voice_type = gr.Dropdown(['masculine-american', 'masculine-british', 'feminine-american', 'feminine-british'], label="Choose Your Voice")
            
            generate_btn = gr.Button(value="Generate")
            voice_sample = gr.File(label="Use custom made voice.")
            voice_prompt = gr.Textbox(label="Enter voice prompt.")
            
            #render_btn = gr.Button(value="Render")
            #print_btn = gr.Button(value="Print")
        with gr.Column():
           
            output_file = gr.Video(label="Ouput video file.")
            output_voiceover = gr.Textbox(label="Generated Text")
            regenerate_btn = gr.Button(value="Re-generate")
            custom_voice_btn = gr.Button(value="Use Custom Voice")
            #print_text = gr.Text(label="Printing")

   
    generate_btn.click(process_video, inputs=[video_input, prompt_user, prompt_input, voice_type], outputs=[output_file,output_voiceover])
    regenerate_btn.click(regenerate, inputs=[video_input, output_voiceover, voice_type], outputs=[output_file,output_voiceover])
    custom_voice_btn.click(process_video_custom_voice, inputs=[video_input, prompt_user, prompt_input, voice_sample, voice_prompt], outputs=[output_file,output_voiceover])

    
demo.launch(auth=("admin", PASSWORD_AUTH))