import gradio as gr from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import FAISS from langchain_community.chat_models.huggingface import ChatHuggingFace from langchain.schema import SystemMessage, HumanMessage, AIMessage from langchain_community.llms import HuggingFaceEndpoint model_name = "sentence-transformers/all-mpnet-base-v2" embedding_llm = SentenceTransformerEmbeddings(model_name=model_name) db = FAISS.load_local("faiss_index", embedding_llm, allow_dangerous_deserialization=True) # Set up Hugging Face model llm = HuggingFaceEndpoint( repo_id="HuggingFaceH4/starchat2-15b-v0.1", task="text-generation", max_new_tokens=4096, temperature=0.6, top_p=0.9, top_k=40, repetition_penalty=1.2, do_sample=True, ) chat_model = ChatHuggingFace(llm=llm) messages = [ SystemMessage(content="You are a helpful assistant."), HumanMessage(content="Hi AI, how are you today?"), AIMessage(content="I'm great thank you. How can I help you?") ] def handle_query(mode: str, query: str): if mode == "chat": return chat_mode(query) elif mode == "web-search": return web_search(query) else: return "Invalid mode selected." def chat_mode(query: str): prompt = HumanMessage(content=query) messages.append(prompt) response = chat_model.invoke(messages) messages.append(response.content) if len(messages) >= 6: messages = messages[-6:] return f"You: {query}\nIT-Assistant: {response.content}" def web_search(query: str): similar_docs = db.similarity_search(query, k=3) if similar_docs: source_knowledge = "\n".join([x.page_content for x in similar_docs]) else: source_knowledge = "" augmented_prompt = f""" Answer the next query using the provided Web Search. If the answer is not contained in the Web Search, ignore the web search and respond independently with your own knowledge. Query: {query} Web Search: {source_knowledge} """ prompt = HumanMessage(content=augmented_prompt) messages.append(prompt) response = chat_model.invoke(messages) messages.append(response.content) if len(messages) >= 6: messages = messages[-6:] return f"You: {query}\nIT-Assistant: {response.content}" demo = gr.Interface(fn=handle_query, inputs=["text", "text"], outputs="text", title="IT Assistant", description="Choose a mode and enter your message, then click submit to interact.", choices=["chat", "web-search"]) demo.launch()