ChatBot / app.py
mou3az's picture
Update app.py
05737a3 verified
raw
history blame
3.75 kB
import gradio as gr
import requests
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS
from langchain_community.chat_models.huggingface import ChatHuggingFace
from langchain.schema import SystemMessage, HumanMessage, AIMessage
from langchain_community.llms import HuggingFaceEndpoint
model_name = "sentence-transformers/all-mpnet-base-v2"
embedding_llm = SentenceTransformerEmbeddings(model_name=model_name)
db = FAISS.load_local("faiss_index", embedding_llm, allow_dangerous_deserialization=True)
# Set up Hugging Face model
llm = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/starchat2-15b-v0.1",
task="text-generation",
max_new_tokens=4096,
temperature=0.6,
top_p=0.9,
top_k=40,
repetition_penalty=1.2,
do_sample=True,
)
chat_model = ChatHuggingFace(llm=llm)
messages = [
SystemMessage(content="You are a helpful assistant."),
HumanMessage(content="Hi AI, how are you today?"),
AIMessage(content="I'm great thank you. How can I help you?")
]
def handle_message(message: str, mode: str):
result_text, result_image = "", None
if not message.strip():
return "Enter a valid message.", None
if mode == "Chat-Message":
result_text = chat_message(message)
elif mode == "Web-Search":
result_text = web_search(message)
elif mode == "Chart-Generator":
result_text, result_image = chart_generator(message)
else:
result_text = "Select a valid mode."
return result_text, result_image
def chat_message(message: str):
global messages
prompt = HumanMessage(content=message)
messages.append(prompt)
response = chat_model.invoke(messages)
messages.append(response.content)
if len(messages) >= 6:
messages = messages[-6:]
return f"IT-Assistant: {response.content}"
def web_search(message: str):
global messages
similar_docs = db.similarity_search(message, k=3)
if similar_docs:
source_knowledge = "\n".join([x.page_content for x in similar_docs])
else:
source_knowledge = ""
augmented_prompt = f"""
If the answer to the next query is not contained in the Web Search, say 'No Answer Is Available' and then just give guidance for the query.
Query: {message}
Web Search:
{source_knowledge}
"""
prompt = HumanMessage(content=augmented_prompt)
messages.append(prompt)
response = chat_model.invoke(messages)
messages.append(response.content)
if len(messages) >= 6:
messages = messages[-6:]
return f"IT-Assistant: {response.content}"
def chart_generator(message: str):
global messages
chart_url = f"https://quickchart.io/natural/{message}"
response = requests.get(chart_url)
if response.status_code == 200:
message_with_description = f"Describe and analyse the content of this chart: {message}"
prompt = HumanMessage(content=message_with_description)
messages.append(prompt)
response = chat_model.invoke(messages)
messages.append(response.content)
if len(messages) >= 6:
messages = messages[-6:]
return f"IT-Assistant: {response.content}", chart_url
else:
return f"Can't generate this image. Please provide valid chart details.", None
demo = gr.Interface(
fn=handle_message,
inputs=["text", gr.Radio(["Chat-Message", "Web-Search", "Chart-Generator"], label="mode", info="Choose a mode and enter your message, then click submit to interact.")],
outputs=[gr.Textbox(label="Response"), gr.Image(label="Chart", type="filepath")],
title="IT Assistant")
demo.launch()