Phone-aid / app.py
Mostafa Shahin
Only Attribute error in Assessment
b5336bb
import random
import Phonemize
from Levenshtein import editops
from gradio.components import Audio, Dropdown, Textbox, Image
import gradio as gr
import transcriber
import json
import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import wavfile
from scipy.signal import spectrogram
import numpy as np
from torch import nn
engine = transcriber.transcribe_SA(model_path='models/SA',verbose=0)
phonemizer = Phonemize.phonemization()
arpa2ipa = pd.read_csv('data/arpa2ipa.csv', sep='\\s+', header=None, names=['arpa','ipa'])
prompts = np.loadtxt('data/prompts.txt', dtype=str)
Attributes = engine.att_list
df_output = None
def select_prompt():
return random.choice(prompts)
def phonemize_prompt(prompt, is_ipa=False):
phonemes = phonemizer.cmu_phonemize(prompt)
phonemes = [ph.lower() for ph in phonemes]
if is_ipa:
phonemes = [arpa2ipa[arpa2ipa.arpa==ph].ipa.values[0] for ph in phonemes]
return ' '.join(phonemes)
def diff_fn():
return [('H','+'),('E','-'),('N',None),('\n', None),('F','-'),('Fgo','-'),('M','+')]
def recognizeAudio(audio_file, attributes, is_ipa=False):
global df_output
if is_ipa:
p2att_matrix = 'data/p2att_en_us-ipa.csv'
else:
p2att_matrix = 'data/p2att_en_us-arpa.csv'
output = engine.transcribe(audio_file, attributes= 'all', phonological_matrix_file=p2att_matrix, human_readable=False)
records = []
d = json.loads(output)
phonemes = d['Phoneme']['symbols']
records.append(['Phoneme']+phonemes)
for att in d['Attributes']:
records.append([att['Name']]+att['Pattern'])
df = pd.DataFrame.from_records(records)
df.fillna('', inplace=True)
df_output = df
return df[df[0].isin(['Phoneme']+list(attributes))].to_html(header=False, index=False)
#Get error by matching the expected sequence with the recognized one and return the output in a format that can be visualized by the gradio HighlightedText box
def get_error(exp_list, rec_list):
exp_list = list(exp_list)
rec_list = list(rec_list)
vocab = set(exp_list+rec_list)
w2c = dict(zip(vocab,range(len(vocab))))
exp_out = [[a,None] for a in exp_list]
rec_out = [[a,None] for a in rec_list]
exp_enc = ''.join([chr(w2c[c]) for c in exp_list])
rec_enc = ''.join([chr(w2c[c]) for c in rec_list])
for op, exp_i, rec_i in editops(exp_enc, rec_enc):
if op == 'replace':
exp_out[exp_i][1] = 'S'
rec_out[rec_i][1] = 'S'
elif op == 'insert':
rec_out[rec_i][1] = 'I'
elif op == 'delete':
exp_out[exp_i][1] = 'D'
diff_list = [['Expected:\t', None]] + exp_out + [['\n',None]] + [['Recognized :\t', None]] + rec_out
return diff_list
def scale_vector(vector, new_min, new_max):
min_val = min(vector)
max_val = max(vector)
scaled_vector = []
for val in vector:
scaled_val = ((val - min_val) * (new_max - new_min) / (max_val - min_val)) + new_min
scaled_vector.append(scaled_val)
return scaled_vector
def create_spectrogram_with_att(wav_file, att_contour, att ):
# Read the WAV file
sampling_rate, data = wavfile.read(wav_file)
# Calculate the spectrogram
f, t, Sxx = spectrogram(data, fs=sampling_rate)
fig, axs = plt.subplots(2, 1, figsize=(10, 10), sharex=True)
# Plot the spectrogram
axs[0].pcolormesh(t, f, 10 * np.log10(Sxx), shading='gouraud') # Use grayscale colormap
#plt.colorbar(label='Intensity (dB)')
axs[0].set_ylabel('Frequency (Hz)')
axs[0].set_xlabel('Time (s)')
axs[0].set_title(f'Spectrogram with {att} Contour')
axs[0].set_ylim(0, 8000) # Adjust the frequency range if necessary
ax_att = axs[0].twinx()
# Plot the att contour
x_points = att_contour.shape[0]
time_att = np.arange(0, x_points * 0.02, 0.02)[:x_points] # Assuming pitch_contour is sampled every 20 ms
ax_att.plot(time_att, att_contour, color='blue', label=f'{att} Contour')
ax_att.set_ylim(0,1)
ax_att.legend()
# Plot the waveform
time = np.arange(0, len(data)) / sampling_rate
axs[1].plot(time, data, color='blue')
axs[1].set_ylabel('Amplitude')
axs[1].set_xlabel('Time (s)')
axs[1].set_title('Waveform')
#plt.show()
return fig
def plot_contour(audio_file, att):
indx_n = engine.processor.tokenizer.convert_tokens_to_ids([f'n_{att}'])[0]
indx_p = engine.processor.tokenizer.convert_tokens_to_ids([f'p_{att}'])[0]
index_all = [engine.processor.tokenizer.pad_token_id, indx_n, indx_p]
prob = nn.functional.softmax(engine.logits.squeeze()[:,index_all], dim=-1)
att_contour = prob[:,-1]
fig = create_spectrogram_with_att(audio_file, att_contour, att)
return fig
with gr.Blocks() as gui:
with gr.Tab("Main"):
prompt = gr.Textbox(label='Prompt', value=select_prompt)
get_prompt = gr.Button("Get Prompt")
get_prompt.click(fn=select_prompt, outputs=prompt)
with gr.Row():
with gr.Column(scale=3):
prompt_phonemes = gr.Textbox(label="Expected Phonemes", interactive=False)
with gr.Column(scale=1):
is_ipa = gr.Checkbox(label="IPA")
get_phoneme = gr.Button("Get Phonemes")
get_phoneme.click(fn=phonemize_prompt, inputs=[prompt, is_ipa], outputs=prompt_phonemes)
record_audio = gr.Audio(sources=["microphone","upload"], type="filepath")
att_list = gr.Dropdown(label="Select Attributes", choices=sorted(Attributes), value=['vowel', 'voiced', 'consonant'] ,multiselect=True)
process = gr.Button("Process Audio")
recognition = gr.HTML(label='Output')
process.click(fn=recognizeAudio, inputs=[record_audio,att_list, is_ipa], outputs=recognition)
with gr.Tab("Assessment"):
assess = gr.Button("Assessment")
diff = []
for i in range(len(Attributes)+1):
diff.append(gr.HighlightedText(
combine_adjacent=False,
show_legend=True,
color_map={"S": "red", "I": "green", "D":"blue"}, visible=False))
def get_assessment(prompt_phonemes):#, recognized_phonemes, recognized_attributes):
outputs = [gr.HighlightedText(visible=False)]*(df_output.shape[0])
outputs[0] = gr.HighlightedText(label=f"Phoneme Assessment",
value=get_error(prompt_phonemes.split(), df_output.iloc[0].values[1:]),
visible=True)
i = 1
for j,r in df_output.iloc[1:].iterrows():
convert = lambda ph: '-' if f'n_{att}' in engine.p2att_map[ph] else '+'
att = r.iloc[0]
exp_att = [convert(ph) for ph in prompt_phonemes.split()]
rec_att = r.iloc[1:].values
if ''.join(exp_att) != ''.join(rec_att):
outputs[i] = gr.HighlightedText(label=f"{att} Assessment",
value=get_error(exp_att, rec_att),
visible=True)
i += 1
return outputs
assess.click(fn=get_assessment, inputs= [prompt_phonemes], outputs=diff)
with gr.Tab("Analysis"):
selected_att = gr.Dropdown( sorted(Attributes), label="Select an Attribute to plot", value='voiced', interactive=True)
do_plot = gr.Button('Plot')
plot_block = gr.Plot(label='Spectrogram with Attribute Contour')
do_plot.click(plot_contour, inputs=[record_audio,selected_att], outputs=plot_block)
gui.launch()