Spaces:
Sleeping
Sleeping
File size: 7,749 Bytes
4c01711 6403fc5 4c01711 9a81c33 4c01711 9a81c33 4c01711 9a81c33 4c01711 9a81c33 4c01711 9a81c33 4c01711 9a81c33 4c01711 41a3296 4c01711 6837b6d 4c01711 1bd17d3 4c01711 1bd17d3 4c01711 6403fc5 1bd17d3 6837b6d 6403fc5 6837b6d 4c01711 1bd17d3 4c01711 1bd17d3 6837b6d 4c01711 6403fc5 4c01711 9a81c33 4c01711 9a81c33 4c01711 6403fc5 4c01711 9a81c33 4c01711 6403fc5 4c01711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import random
import Phonemize
from Levenshtein import editops
from gradio.components import Audio, Dropdown, Textbox, Image
import gradio as gr
import transcriber
import json
import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import wavfile
from scipy.signal import spectrogram
import numpy as np
from torch import nn
engine = transcriber.transcribe_SA(model_path='models/SA',verbose=0)
phonemizer = Phonemize.phonemization()
arpa2ipa = pd.read_csv('data/arpa2ipa.csv', sep='\\s+', header=None, names=['arpa','ipa'])
prompts = np.loadtxt('data/prompts.txt', dtype=str)
Attributes = engine.att_list
df_output = None
def select_prompt():
return random.choice(prompts)
def phonemize_prompt(prompt, is_ipa=False):
phonemes = phonemizer.cmu_phonemize(prompt)
phonemes = [ph.lower() for ph in phonemes]
if is_ipa:
phonemes = [arpa2ipa[arpa2ipa.arpa==ph].ipa.values[0] for ph in phonemes]
return ' '.join(phonemes)
def diff_fn():
return [('H','+'),('E','-'),('N',None),('\n', None),('F','-'),('Fgo','-'),('M','+')]
def recognizeAudio(audio_file, attributes, is_ipa=False):
#print(','.join(attributes))
global df_output
if is_ipa:
p2att_matrix = 'data/p2att_en_us-ipa.csv'
else:
p2att_matrix = 'data/p2att_en_us-arpa.csv'
output = engine.transcribe(audio_file, attributes= tuple(attributes), phonological_matrix_file=p2att_matrix, human_readable=False)
records = []
d = json.loads(output)
phonemes = d['Phoneme']['symbols']
#if is_ipa:
# phonemes = [arpa2ipa[arpa2ipa.arpa==ph].ipa.values[0] for ph in phonemes]
records.append(['Phoneme']+phonemes)
for att in d['Attributes']:
records.append([att['Name']]+att['Pattern'])
df = pd.DataFrame.from_records(records)
df.fillna('', inplace=True)
df_output = df
return df.to_html(header=False, index=False)
#Get error by matching the expected sequence with the recognized one and return the output in a format that can be visualized by the gradio HighlightedText box
def get_error(exp_list, rec_list):
exp_list = list(exp_list)
rec_list = list(rec_list)
vocab = set(exp_list+rec_list)
w2c = dict(zip(vocab,range(len(vocab))))
exp_out = [[a,None] for a in exp_list]
rec_out = [[a,None] for a in rec_list]
exp_enc = ''.join([chr(w2c[c]) for c in exp_list])
rec_enc = ''.join([chr(w2c[c]) for c in rec_list])
for op, exp_i, rec_i in editops(exp_enc, rec_enc):
if op == 'replace':
exp_out[exp_i][1] = 'S'
rec_out[rec_i][1] = 'S'
elif op == 'insert':
rec_out[rec_i][1] = 'I'
elif op == 'delete':
exp_out[exp_i][1] = 'D'
diff_list = [['Expected:\t', None]] + exp_out + [['\n',None]] + [['Recognized :\t', None]] + rec_out
return diff_list
def scale_vector(vector, new_min, new_max):
min_val = min(vector)
max_val = max(vector)
scaled_vector = []
for val in vector:
scaled_val = ((val - min_val) * (new_max - new_min) / (max_val - min_val)) + new_min
scaled_vector.append(scaled_val)
return scaled_vector
def create_spectrogram_with_att(wav_file, att_contour, att ):
# Read the WAV file
sampling_rate, data = wavfile.read(wav_file)
# Calculate the spectrogram
f, t, Sxx = spectrogram(data, fs=sampling_rate)
fig, axs = plt.subplots(2, 1, figsize=(10, 10), sharex=True)
# Plot the spectrogram
axs[0].pcolormesh(t, f, 10 * np.log10(Sxx), shading='gouraud') # Use grayscale colormap
#plt.colorbar(label='Intensity (dB)')
axs[0].set_ylabel('Frequency (Hz)')
axs[0].set_xlabel('Time (s)')
axs[0].set_title(f'Spectrogram with {att} Contour')
axs[0].set_ylim(0, 8000) # Adjust the frequency range if necessary
ax_att = axs[0].twinx()
# Plot the att contour
x_points = att_contour.shape[0]
time_att = np.arange(0, x_points * 0.02, 0.02)[:x_points] # Assuming pitch_contour is sampled every 20 ms
ax_att.plot(time_att, att_contour, color='blue', label=f'{att} Contour')
ax_att.set_ylim(0,1)
ax_att.legend()
# Plot the waveform
time = np.arange(0, len(data)) / sampling_rate
axs[1].plot(time, data, color='blue')
axs[1].set_ylabel('Amplitude')
axs[1].set_xlabel('Time (s)')
axs[1].set_title('Waveform')
#plt.show()
return fig
def plot_contour(audio_file, att):
indx_n = engine.processor.tokenizer.convert_tokens_to_ids([f'n_{att}'])[0]
indx_p = engine.processor.tokenizer.convert_tokens_to_ids([f'p_{att}'])[0]
index_all = [engine.processor.tokenizer.pad_token_id, indx_n, indx_p]
prob = nn.functional.softmax(engine.logits.squeeze()[:,index_all], dim=-1)
att_contour = prob[:,-1]
fig = create_spectrogram_with_att(audio_file, att_contour, att)
return fig
with gr.Blocks() as gui:
with gr.Tab("Main"):
prompt = gr.Textbox(label='Prompt', value=select_prompt)
get_prompt = gr.Button("Get Prompt")
get_prompt.click(fn=select_prompt, outputs=prompt)
with gr.Row():
with gr.Column(scale=3):
prompt_phonemes = gr.Textbox(label="Expected Phonemes", interactive=False)
with gr.Column(scale=1):
is_ipa = gr.Checkbox(label="IPA")
get_phoneme = gr.Button("Get Phonemes")
get_phoneme.click(fn=phonemize_prompt, inputs=[prompt, is_ipa], outputs=prompt_phonemes)
record_audio = gr.Audio(sources=["microphone","upload"], type="filepath")
att_list = gr.Dropdown(label="Select Attributes", choices=sorted(Attributes), value=['vowel', 'voiced', 'consonant'] ,multiselect=True)
process = gr.Button("Process Audio")
recognition = gr.HTML(label='Output')
process.click(fn=recognizeAudio, inputs=[record_audio,att_list, is_ipa], outputs=recognition)
with gr.Tab("Assessment"):
assess = gr.Button("Assessment")
diff = []
for i in range(len(Attributes)+1):
diff.append(gr.HighlightedText(
combine_adjacent=False,
show_legend=True,
color_map={"S": "red", "I": "green", "D":"blue"}, visible=False))
def get_assessment(prompt_phonemes):#, recognized_phonemes, recognized_attributes):
outputs = [gr.HighlightedText(visible=False)]*(len(Attributes)+1)
outputs[0] = gr.HighlightedText(label=f"Phoneme Assessment",
value=get_error(prompt_phonemes.split(), df_output.iloc[0].values[1:]),
visible=True)
i = 1
for i,r in df_output.iloc[1:].iterrows():
convert = lambda ph: '-' if f'n_{att}' in engine.p2att_map[ph] else '+'
att = r.iloc[0]
exp_att = [convert(ph) for ph in prompt_phonemes.split()]
rec_att = r.iloc[1:].values
outputs[i] = gr.HighlightedText(label=f"{att} Assessment",
value=get_error(exp_att, rec_att),
visible=True)
i += 1
return outputs
assess.click(fn=get_assessment, inputs= [prompt_phonemes], outputs=diff)
with gr.Tab("Analysis"):
selected_att = gr.Dropdown( sorted(Attributes), label="Select an Attribute to plot", value='voiced', interactive=True)
do_plot = gr.Button('Plot')
plot_block = gr.Plot(label='Spectrogram with Attribute Contour')
do_plot.click(plot_contour, inputs=[record_audio,selected_att], outputs=plot_block)
gui.launch()
|