Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import sys
|
3 |
+
|
4 |
+
def install_package():
|
5 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "https://github.com/hibikaze-git/LLaVA-JP@feature/tanuki-moe"])
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
import transformers
|
10 |
+
from transformers import BitsAndBytesConfig
|
11 |
+
from llavajp.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
|
12 |
+
from llavajp.conversation import conv_templates
|
13 |
+
from llavajp.model.llava_llama import LlavaLlamaForCausalLM
|
14 |
+
from llavajp.train.dataset import tokenizer_image_token
|
15 |
+
import spaces
|
16 |
+
|
17 |
+
model_path = "weblab-GENIAC/Tanuki-8B-vision"
|
18 |
+
|
19 |
+
# load model
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
22 |
+
|
23 |
+
bnb_model_from_pretrained_args = {}
|
24 |
+
bnb_model_from_pretrained_args.update(dict(
|
25 |
+
device_map="auto",
|
26 |
+
quantization_config=BitsAndBytesConfig(
|
27 |
+
load_in_8bit=True,
|
28 |
+
llm_int8_skip_modules=["mm_projector", "vision_tower"],
|
29 |
+
llm_int8_threshold=6.0,
|
30 |
+
llm_int8_has_fp16_weight=False,
|
31 |
+
)
|
32 |
+
))
|
33 |
+
|
34 |
+
model = LlavaLlamaForCausalLM.from_pretrained(
|
35 |
+
model_path,
|
36 |
+
low_cpu_mem_usage=True,
|
37 |
+
use_safetensors=True,
|
38 |
+
**bnb_model_from_pretrained_args
|
39 |
+
)
|
40 |
+
|
41 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
42 |
+
model_path,
|
43 |
+
model_max_length=8192,
|
44 |
+
padding_side="right",
|
45 |
+
use_fast=False,
|
46 |
+
)
|
47 |
+
model.eval()
|
48 |
+
conv_mode = "v1"
|
49 |
+
|
50 |
+
@torch.inference_mode()
|
51 |
+
def inference_fn(
|
52 |
+
image,
|
53 |
+
prompt,
|
54 |
+
max_len,
|
55 |
+
temperature,
|
56 |
+
top_p,
|
57 |
+
no_repeat_ngram_size
|
58 |
+
):
|
59 |
+
# prepare inputs
|
60 |
+
# image pre-process
|
61 |
+
image_size = model.get_model().vision_tower.image_processor.size["height"]
|
62 |
+
if model.get_model().vision_tower.scales is not None:
|
63 |
+
image_size = model.get_model().vision_tower.image_processor.size[
|
64 |
+
"height"
|
65 |
+
] * len(model.get_model().vision_tower.scales)
|
66 |
+
|
67 |
+
if device == "cuda":
|
68 |
+
image_tensor = (
|
69 |
+
model.get_model()
|
70 |
+
.vision_tower.image_processor(
|
71 |
+
image,
|
72 |
+
return_tensors="pt",
|
73 |
+
size={"height": image_size, "width": image_size},
|
74 |
+
)["pixel_values"]
|
75 |
+
.half()
|
76 |
+
.cuda()
|
77 |
+
.to(torch_dtype)
|
78 |
+
)
|
79 |
+
else:
|
80 |
+
image_tensor = (
|
81 |
+
model.get_model()
|
82 |
+
.vision_tower.image_processor(
|
83 |
+
image,
|
84 |
+
return_tensors="pt",
|
85 |
+
size={"height": image_size, "width": image_size},
|
86 |
+
)["pixel_values"]
|
87 |
+
.to(torch_dtype)
|
88 |
+
)
|
89 |
+
|
90 |
+
# create prompt
|
91 |
+
inp = DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
92 |
+
conv = conv_templates[conv_mode].copy()
|
93 |
+
conv.append_message(conv.roles[0], inp)
|
94 |
+
conv.append_message(conv.roles[1], None)
|
95 |
+
prompt = conv.get_prompt()
|
96 |
+
|
97 |
+
input_ids = tokenizer_image_token(
|
98 |
+
prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
|
99 |
+
).unsqueeze(0)
|
100 |
+
if device == "cuda":
|
101 |
+
input_ids = input_ids.to(device)
|
102 |
+
|
103 |
+
input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
|
104 |
+
|
105 |
+
# generate
|
106 |
+
output_ids = model.generate(
|
107 |
+
inputs=input_ids,
|
108 |
+
images=image_tensor,
|
109 |
+
do_sample=temperature != 0.0,
|
110 |
+
temperature=temperature,
|
111 |
+
top_p=top_p,
|
112 |
+
max_new_tokens=max_len,
|
113 |
+
repetition_penalty=1.0,
|
114 |
+
use_cache=False,
|
115 |
+
no_repeat_ngram_size=no_repeat_ngram_size
|
116 |
+
)
|
117 |
+
|
118 |
+
output_ids = [
|
119 |
+
token_id for token_id in output_ids.tolist()[0] if token_id != IMAGE_TOKEN_INDEX
|
120 |
+
]
|
121 |
+
|
122 |
+
print(output_ids)
|
123 |
+
output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
124 |
+
|
125 |
+
print(output)
|
126 |
+
|
127 |
+
target = "システム: "
|
128 |
+
idx = output.find(target)
|
129 |
+
output = output[idx + len(target) :]
|
130 |
+
|
131 |
+
return output
|
132 |
+
|
133 |
+
@spaces.GPU
|
134 |
+
with gr.Blocks() as demo:
|
135 |
+
gr.Markdown("# LLaVA-JP Demo")
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
with gr.Column():
|
139 |
+
# input_instruction = gr.TextArea(label="instruction", value=DEFAULT_INSTRUCTION)
|
140 |
+
input_image = gr.Image(type="pil", label="image")
|
141 |
+
prompt = gr.Textbox(label="prompt (optional)", value="")
|
142 |
+
with gr.Accordion(label="Configs", open=False):
|
143 |
+
max_len = gr.Slider(
|
144 |
+
minimum=10,
|
145 |
+
maximum=256,
|
146 |
+
value=200,
|
147 |
+
step=5,
|
148 |
+
interactive=True,
|
149 |
+
label="Max New Tokens",
|
150 |
+
)
|
151 |
+
|
152 |
+
temperature = gr.Slider(
|
153 |
+
minimum=0.0,
|
154 |
+
maximum=1.0,
|
155 |
+
value=0.0,
|
156 |
+
step=0.1,
|
157 |
+
interactive=True,
|
158 |
+
label="Temperature",
|
159 |
+
)
|
160 |
+
|
161 |
+
top_p = gr.Slider(
|
162 |
+
minimum=0.5,
|
163 |
+
maximum=1.0,
|
164 |
+
value=1.0,
|
165 |
+
step=0.1,
|
166 |
+
interactive=True,
|
167 |
+
label="Top p",
|
168 |
+
)
|
169 |
+
|
170 |
+
no_repeat_ngram_size = gr.Slider(
|
171 |
+
minimum=0,
|
172 |
+
maximum=4,
|
173 |
+
value=3.0,
|
174 |
+
step=1,
|
175 |
+
interactive=True,
|
176 |
+
label="No Repeat Ngram Size(1, 2にすると出力が狂います)",
|
177 |
+
)
|
178 |
+
# button
|
179 |
+
input_button = gr.Button(value="Submit")
|
180 |
+
with gr.Column():
|
181 |
+
output = gr.Textbox(label="Output")
|
182 |
+
|
183 |
+
inputs = [input_image, prompt, max_len, temperature, top_p, no_repeat_ngram_size]
|
184 |
+
input_button.click(inference_fn, inputs=inputs, outputs=[output])
|
185 |
+
prompt.submit(inference_fn, inputs=inputs, outputs=[output])
|
186 |
+
img2txt_examples = gr.Examples(
|
187 |
+
examples=[
|
188 |
+
[
|
189 |
+
"https://raw.githubusercontent.com/hibikaze-git/LLaVA-JP/feature/package/imgs/sample1.jpg",
|
190 |
+
"猫の隣には何がありますか?",
|
191 |
+
128,
|
192 |
+
0.0,
|
193 |
+
1.0,
|
194 |
+
3.0
|
195 |
+
],
|
196 |
+
],
|
197 |
+
inputs=inputs,
|
198 |
+
)
|
199 |
+
|
200 |
+
|
201 |
+
if __name__ == "__main__":
|
202 |
+
demo.queue().launch(server_name="0.0.0.0")
|