' for suggest in result[word]: output += f'
import gradio as gr from datasets import load_dataset import re import numpy as np dataset = load_dataset("mohamedabdullah/Arabic-unique-words", data_files="ar_vocab.txt") word_l = re.findall('[^a-zA-Z0-9\s\W]{2,25}', dataset['train']['text'][0]) vocab = set(word_l) def delete_letter(word): return [word[:i]+word[i+1:] for i in range(len(word))] def switch_letter(word): switch_l = [] for i in range(len(word)-1): w_l = re.findall('\w', word) if i-1 < 0: w_l[i:i+2] = w_l[i+1::-1] else: w_l[i:i+2] = w_l[i+1:i-1:-1] switch_l.append(''.join(w_l)) return switch_l def replace_letter(word): letters = 'ابتةثجحخدذرزسشصضطظعغفقكلمنهويءآأؤإئ' replace_set = set() for i in range(len(word)): for l in letters: new_word = word[:i]+l+word[i+1:] if new_word == word: continue replace_set.add(new_word) replace_l = sorted(list(replace_set)) return replace_l def insert_letter(word): letters = 'ابتةثجحخدذرزسشصضطظعغفقكلمنهويءآأؤإئ' insert_l = [] for i in range(len(word)+1): for l in letters: new_word = word[:i]+l+word[i:] insert_l.append(new_word) return insert_l def edit_one_letter(word, allow_switches = True): edit_one_set = delete_letter(word)+insert_letter(word)+replace_letter(word) if allow_switches: edit_one_set += switch_letter(word) return set(edit_one_set) def edit_two_letters(word, allow_switches = True): edit_two_set = [] edit_one_set = edit_one_letter(word) for edit in edit_one_set: edit_two_set += edit_one_letter(edit) return set(edit_two_set) | set(edit_one_set) def get_corrections(word, vocab): suggestions = [] correct_word_suggest = [word] if word in vocab else [] edit_one_letter_suggest = list(filter(lambda item: item in vocab, list(edit_one_letter(word)))) edit_two_letter_suggest = list(filter(lambda item: item in vocab, list(edit_two_letters(word)))) suggestions = correct_word_suggest or edit_one_letter_suggest or edit_two_letter_suggest or ['لم يتم العثور علي إقتراحات مناسبة لهذه الكلمة'] return set(suggestions) def min_edit_distance(source, target, ins_cost = 1, del_cost = 1, rep_cost = 2): m = len(source) n = len(target) D = np.zeros((m+1, n+1), dtype=int) for row in range(1, m+1): D[row,0] = D[row-1,0]+del_cost for col in range(1, n+1): D[0,col] = D[0, col-1]+ins_cost for row in range(1, m+1): for col in range(1, n+1): r_cost = rep_cost if source[row-1] == target[col-1]: r_cost = 0 D[row,col] = np.min([D[row-1,col]+del_cost, D[row,col-1]+ins_cost, D[row-1,col-1]+r_cost]) med = D[m,n] return med def get_suggestions(corrections, word): distance = [] suggest = [] for correction in corrections: source = word target = correction min_edits = min_edit_distance(source, target) distance.append(min_edits) suggest.append(correction) suggest_result = list(map(lambda idx: suggest[idx], np.argsort(distance))) return suggest_result def ar_spelling_checker(text): word_l = re.findall('\w{3,}', text) result = {} for word in word_l: tmp_corrections = [] if not word in vocab: tmp_corrections = get_corrections(word, vocab) if len(tmp_corrections) == 0: continue result[word] = get_suggestions(tmp_corrections, word) output = '''''' output += '
Web-based app to detect spelling mistakes in Arabic words using dynamic programming
') text = gr.Textbox(label="النص", elem_id="input") btn = gr.Button("Spelling Check") output = gr.HTML() btn.click(ar_spelling_checker, [text], output) demo.launch(inline=False)