Spaces:
Running
on
A10G
Running
on
A10G
File size: 11,127 Bytes
3d4d894 d47ae93 3d4d894 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
"""This file contains methods for inference and image generation."""
import logging
from typing import List, Tuple, Dict
import streamlit as st
import torch
import numpy as np
from PIL import Image
from time import perf_counter
from contextlib import contextmanager
from scipy.signal import fftconvolve
from PIL import ImageFilter
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
from diffusers import ControlNetModel, UniPCMultistepScheduler
from diffusers import StableDiffusionInpaintPipeline
from compel import Compel
from config import WIDTH, HEIGHT
from palette import ade_palette
from stable_diffusion_controlnet_inpaint_img2img import StableDiffusionControlNetInpaintImg2ImgPipeline
LOGGING = logging.getLogger(__name__)
@contextmanager
def catchtime(message: str) -> float:
"""Context manager to measure time
Args:
message (str): message to log
Returns:
float: time in seconds
Yields:
Iterator[float]: time in seconds
"""
start = perf_counter()
yield lambda: perf_counter() - start
LOGGING.info('%s: %.3f seconds', message, perf_counter() - start)
def convolution(mask: Image.Image, size=9) -> Image:
"""Method to blur the mask
Args:
mask (Image): masking image
size (int, optional): size of the blur. Defaults to 9.
Returns:
Image: blurred mask
"""
mask = np.array(mask.convert("L"))
conv = np.ones((size, size)) / size**2
mask_blended = fftconvolve(mask, conv, 'same')
mask_blended = mask_blended.astype(np.uint8).copy()
border = size
# replace borders with original values
mask_blended[:border, :] = mask[:border, :]
mask_blended[-border:, :] = mask[-border:, :]
mask_blended[:, :border] = mask[:, :border]
mask_blended[:, -border:] = mask[:, -border:]
return Image.fromarray(mask_blended).convert("L")
def postprocess_image_masking(inpainted: Image, image: Image, mask: Image) -> Image:
"""Method to postprocess the inpainted image
Args:
inpainted (Image): inpainted image
image (Image): original image
mask (Image): mask
Returns:
Image: inpainted image
"""
final_inpainted = Image.composite(inpainted.convert("RGBA"), image.convert("RGBA"), mask)
return final_inpainted.convert("RGB")
@st.experimental_singleton(max_entries=1)
def get_controlnet() -> ControlNetModel:
"""Method to load the controlnet model
Returns:
ControlNetModel: controlnet model
"""
controlnet = ControlNetModel.from_pretrained(
"BertChristiaens/controlnet-seg-room", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to("cuda")
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
return pipe, compel_proc
@st.experimental_singleton(max_entries=1)
def get_segmentation_pipeline() -> Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]:
"""Method to load the segmentation pipeline
Returns:
Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]: segmentation pipeline
"""
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
"openmmlab/upernet-convnext-small")
return image_processor, image_segmentor
@st.experimental_singleton(max_entries=1)
def get_inpainting_pipeline() -> StableDiffusionInpaintPipeline:
"""Method to load the inpainting pipeline
Returns:
StableDiffusionInpaintPipeline: inpainting pipeline
"""
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16,
safety_checker=None,
)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to("cuda")
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
return pipe, compel_proc
def make_grid_parameters(grid_search: Dict, params: Dict) -> List[Dict]:
"""Method to make grid parameters
Args:
grid_search (Dict): grid search parameters
params (Dict): fixed parameters
Returns:
List[Dict]: grid parameters
"""
options = []
for k in range(len(grid_search['generator'])):
for i in range(len(grid_search['strength'])):
for j in range(len(grid_search['guidance_scale'])):
options.append({'strength': grid_search['strength'][i],
'guidance_scale': grid_search['guidance_scale'][j],
'generator': grid_search['generator'][k],
**params
})
return options
def make_captions(options: List[Dict]) -> List[str]:
"""Method to make captions
Args:
options (List[Dict]): grid parameters
Returns:
List[str]: captions
"""
captions = []
for option in options:
captions.append(
f"strength {option['strength']}, guidance {option['guidance_scale']}, steps {option['num_inference_steps']}")
return captions
@torch.inference_mode()
def make_image_controlnet(image: np.ndarray,
mask_image: np.ndarray,
controlnet_conditioning_image: np.ndarray,
positive_prompt: str, negative_prompt: str,
seed: int = 2356132) -> List[Image.Image]:
"""Method to make image using controlnet
Args:
image (np.ndarray): input image
mask_image (np.ndarray): mask image
controlnet_conditioning_image (np.ndarray): conditioning image
positive_prompt (str): positive prompt string
negative_prompt (str): negative prompt string
seed (int, optional): seed. Defaults to 2356132.
Returns:
List[Image.Image]: list of generated images
"""
with catchtime("get controlnet"):
pipe, proc = get_controlnet()
torch.cuda.empty_cache()
images = []
if '+' in positive_prompt or '-' in positive_prompt or '+' in negative_prompt or '-' in negative_prompt:
common_parameters = {'prompt_embeds': proc(positive_prompt),
'negative_prompt_embeds': proc(negative_prompt),
'num_inference_steps': 30,
'controlnet_conditioning_scale': 1.1,
'controlnet_conditioning_scale_decay': 0.96,
'controlnet_steps': 28,
}
else:
common_parameters = {'prompt': positive_prompt,
'negative_prompt': negative_prompt,
'num_inference_steps': 30,
'controlnet_conditioning_scale': 1.1,
'controlnet_conditioning_scale_decay': 0.96,
'controlnet_steps': 28,
}
grid_search = {'strength': [1.00, ],
'guidance_scale': [7.0],
'generator': [[torch.Generator(device="cuda").manual_seed(seed+i)] for i in range(1)],
}
prompt_settings = make_grid_parameters(grid_search, common_parameters)
mask_image = Image.fromarray((mask_image * 255).astype(np.uint8)).convert("RGB")
image = Image.fromarray(image).convert("RGB")
controlnet_conditioning_image = Image.fromarray(controlnet_conditioning_image).convert("RGB").filter(ImageFilter.GaussianBlur(radius = 9))
mask_image_postproc = convolution(mask_image)
with catchtime("Controlnet generation total"):
for _, setting in enumerate(prompt_settings):
with catchtime("Controlnet generation"):
generated_image = pipe(
**setting,
image=image,
mask_image=mask_image,
controlnet_conditioning_image=controlnet_conditioning_image,
).images[0]
generated_image = postprocess_image_masking(
generated_image, image, mask_image_postproc)
images.append(generated_image)
return images
@torch.inference_mode()
def make_inpainting(positive_prompt: str,
image: Image,
mask_image: np.ndarray,
negative_prompt: str = "") -> List[Image.Image]:
"""Method to make inpainting
Args:
positive_prompt (str): positive prompt string
image (Image): input image
mask_image (np.ndarray): mask image
negative_prompt (str, optional): negative prompt string. Defaults to "".
Returns:
List[Image.Image]: list of generated images
"""
with catchtime("Get inpainting pipeline"):
pipe, proc = get_inpainting_pipeline()
if '+' in positive_prompt or '-' in positive_prompt or '+' in negative_prompt or '-' in negative_prompt:
common_parameters = {'prompt_embeds': proc(positive_prompt),
'negative_prompt_embeds': proc(negative_prompt),
'num_inference_steps': 20,
}
else:
common_parameters = {'prompt': positive_prompt,
'negative_prompt': negative_prompt,
'num_inference_steps': 20,
}
torch.cuda.empty_cache()
images = []
for _ in range(1):
with catchtime("Inpainting generation"):
image_ = pipe(image=image,
mask_image=Image.fromarray((mask_image * 255).astype(np.uint8)),
height=HEIGHT,
width=WIDTH,
**common_parameters
).images[0]
images.append(image_)
return images
@torch.inference_mode()
@torch.autocast('cuda')
def segment_image(image: Image) -> Image:
"""Method to segment image
Args:
image (Image): input image
Returns:
Image: segmented image
"""
image_processor, image_segmentor = get_segmentation_pipeline()
pixel_values = image_processor(image, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = image_segmentor(pixel_values)
seg = image_processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]])
seg = seg[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array(ade_palette())
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
color_seg = color_seg.astype(np.uint8)
seg_image = Image.fromarray(color_seg).convert('RGB')
return seg_image |