mikemin027's picture
Update app.py
c11820f verified
raw
history blame
1.84 kB
import gradio as gr
from huggingface_hub import InferenceClient
from llama_cpp import Llama
# Initialize the InferenceClient
client = InferenceClient()
llm = Llama.from_pretrained(
repo_id="bartowski/Ministral-8B-Instruct-2410-GGUF",
filename="Ministral-8B-Instruct-2410-Q4_K_M.gguf",
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
# Use the client to get the chat completion
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message['choices'][0]['delta']['content']
response += token
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly, conversational, helpful, and informative chatbot, designed to help users as best as possible. Responses should be quirky and fun to read, including the use of appropriate emojis in answers, wherever necesssary.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()