|
from __future__ import annotations |
|
|
|
from typing import Iterable |
|
|
|
import gradio as gr |
|
import pynvml |
|
|
|
|
|
from ctransformers import AutoModelForCausalLM |
|
from gradio.themes.base import Base |
|
from gradio.themes.utils import colors, fonts, sizes |
|
from huggingface_hub import hf_hub_download |
|
from loguru import logger |
|
|
|
repo_id = "TheBloke/openbuddy-mistral-7B-v13-GGUF" |
|
filename = "openbuddy-mistral-7b-v13.Q4_K_S.gguf" |
|
|
|
logger.debug("Start dl") |
|
model_path = hf_hub_download(repo_id=repo_id, filename=filename, revision="main") |
|
logger.debug("Done dl") |
|
|
|
|
|
|
|
|
|
has_cuda = False |
|
try: |
|
pynvml.nvmlInit() |
|
has_cuda = True |
|
logger.debug("has cuda") |
|
except pynvml.nvml.NVMLError_LibraryNotFound: |
|
logger.debug("no cuda") |
|
|
|
|
|
if has_cuda: |
|
gpu_layers = 50 |
|
else: |
|
gpu_layers = 0 |
|
|
|
logger.debug("Start loading the model") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, model_type="mistral", gpu_layers=gpu_layers |
|
) |
|
logger.debug("Done loading the model") |
|
|
|
ins = """[INST] <<FRIDAY>> |
|
Remember that your English name is "Shi-Ci" and your name in Chinese is "兮辞". You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. |
|
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. |
|
<</FRIDAY>> |
|
{} [/INST] |
|
""" |
|
|
|
theme = gr.themes.Monochrome( |
|
primary_hue="indigo", |
|
secondary_hue="blue", |
|
neutral_hue="slate", |
|
radius_size=gr.themes.sizes.radius_sm, |
|
font=[ |
|
gr.themes.GoogleFont("Open Sans"), |
|
"ui-sans-serif", |
|
"system-ui", |
|
"sans-serif", |
|
], |
|
) |
|
|
|
|
|
def response(question): |
|
res = model(ins.format(question)) |
|
yield res |
|
|
|
|
|
examples = ["Hello!"] |
|
|
|
|
|
def process_example(args): |
|
for x in response(args): |
|
pass |
|
return x |
|
|
|
|
|
css = ".generating {visibility: hidden}" |
|
|
|
|
|
|
|
class SeafoamCustom(Base): |
|
def __init__( |
|
self, |
|
*, |
|
primary_hue: colors.Color | str = colors.emerald, |
|
secondary_hue: colors.Color | str = colors.blue, |
|
neutral_hue: colors.Color | str = colors.blue, |
|
spacing_size: sizes.Size | str = sizes.spacing_md, |
|
radius_size: sizes.Size | str = sizes.radius_md, |
|
font: fonts.Font |
|
| str |
|
| Iterable[fonts.Font | str] = ( |
|
fonts.GoogleFont("Quicksand"), |
|
"ui-sans-serif", |
|
"sans-serif", |
|
), |
|
font_mono: fonts.Font |
|
| str |
|
| Iterable[fonts.Font | str] = ( |
|
fonts.GoogleFont("IBM Plex Mono"), |
|
"ui-monospace", |
|
"monospace", |
|
), |
|
): |
|
"""Init.""" |
|
super().__init__( |
|
primary_hue=primary_hue, |
|
secondary_hue=secondary_hue, |
|
neutral_hue=neutral_hue, |
|
spacing_size=spacing_size, |
|
radius_size=radius_size, |
|
font=font, |
|
font_mono=font_mono, |
|
) |
|
super().set( |
|
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)", |
|
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)", |
|
button_primary_text_color="white", |
|
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)", |
|
block_shadow="*shadow_drop_lg", |
|
button_shadow="*shadow_drop_lg", |
|
input_background_fill="zinc", |
|
input_border_color="*secondary_300", |
|
input_shadow="*shadow_drop", |
|
input_shadow_focus="*shadow_drop_lg", |
|
) |
|
|
|
|
|
seafoam = SeafoamCustom() |
|
|
|
|
|
with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo: |
|
with gr.Column(): |
|
gr.Markdown( |
|
""" ## Shi-Ci Extensional Analyzer |
|
|
|
Type in the box below and click the button to generate answers to your most pressing questions! |
|
|
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
instruction = gr.Textbox( |
|
placeholder="Enter your question here", |
|
label="Question", |
|
elem_id="q-input", |
|
) |
|
|
|
with gr.Box(): |
|
gr.Markdown("**Answer**") |
|
output = gr.Markdown(elem_id="q-output") |
|
submit = gr.Button("Generate", variant="primary") |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[instruction], |
|
cache_examples=True, |
|
fn=process_example, |
|
outputs=[output], |
|
) |
|
|
|
submit.click(response, inputs=[instruction], outputs=[output]) |
|
instruction.submit(response, inputs=[instruction], outputs=[output]) |
|
|
|
demo.queue(concurrency_count=1).launch(debug=False, share=True) |
|
|