File size: 5,960 Bytes
9523a2b
 
d93bf74
 
9523a2b
 
 
909aca2
 
 
9523a2b
 
 
5080c22
909aca2
5080c22
d93bf74
 
 
 
 
 
 
909aca2
 
5080c22
909aca2
d93bf74
 
 
 
 
909aca2
9523a2b
 
5080c22
 
909aca2
 
 
 
 
d93bf74
909aca2
 
 
 
5080c22
 
 
 
909aca2
 
 
 
 
 
 
9523a2b
 
 
 
909aca2
9523a2b
 
 
 
 
 
909aca2
 
 
 
 
 
9523a2b
909aca2
 
9523a2b
 
 
 
 
909aca2
 
9523a2b
 
d93bf74
9523a2b
 
 
 
909aca2
9523a2b
 
909aca2
9523a2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec833bc
9523a2b
 
 
 
 
 
 
 
909aca2
 
 
 
 
9523a2b
 
 
 
 
 
 
 
45b40bd
 
9523a2b
 
 
 
 
 
 
45b40bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from __future__ import annotations

import os
import time
from typing import Iterable

import gradio as gr
import pynvml

# import torch
from ctransformers import AutoModelForCausalLM
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from huggingface_hub import hf_hub_download  # snapshot_download,
from loguru import logger

os.environ["TZ"] = "Asia/Shanghai"
try:
    time.tzset()  # type: ignore
    logger.debug(f"Timezone set to {os.environ['TZ']=}")
except AttributeError:
    ...  # Windows

repo_id = "TheBloke/openbuddy-mistral-7B-v13-GGUF"
filename = "openbuddy-mistral-7b-v13.Q4_K_S.gguf"  # 4.17G

logger.debug("Start dl")
try:
    model_path = hf_hub_download(repo_id=repo_id, filename=filename, revision="main")
except Exception as exc:
    logger.error(exc)
    raise SystemExit("hf acting up, can't donwload the model, exiting")
logger.debug("Done dl")

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
# model = AutoModelForCausalLM.from_pretrained("TheBloke/openbuddy-mistral-7B-v13-GGUF", model_file="openbuddy-mistral-7b-v13.Q4_K_S.gguf", model_type="mistral", gpu_layers=0)

has_cuda = False
try:
    pynvml.nvmlInit()
    has_cuda = True
    logger.debug("has cuda")
except pynvml.nvml.NVMLError_LibraryNotFound:  # type: ignore
    logger.debug("no cuda")

# if torch.cuda.is_available():
if has_cuda:
    gpu_layers = 50  # set to what you like for GPU
else:
    gpu_layers = 0

logger.debug("Start loading the model")
model = AutoModelForCausalLM.from_pretrained(
    model_path, model_type="mistral", gpu_layers=gpu_layers
)
logger.debug("Done loading the model")

ins = """[INST] <<FRIDAY>>
Remember that your English name is "Shi-Ci" and your name in Chinese is "兮辞". You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</FRIDAY>>
{} [/INST]
"""

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[
        gr.themes.GoogleFont("Open Sans"),
        "ui-sans-serif",
        "system-ui",
        "sans-serif",
    ],
)


def response(question):
    res = model(ins.format(question))
    yield res


examples = ["Hello!"]


def process_example(args):
    x = None
    for x in response(args):
        pass
    return x


css = ".generating {visibility: hidden}"


# Based on the gradio theming guide and borrowed from https://huggingface.co/spaces/shivi/dolly-v2-demo
class SeafoamCustom(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.emerald,
        secondary_hue: colors.Color | str = colors.blue,
        neutral_hue: colors.Color | str = colors.blue,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        font: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Quicksand"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        """Init."""
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
            button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
            button_primary_text_color="white",
            button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
            block_shadow="*shadow_drop_lg",
            button_shadow="*shadow_drop_lg",
            input_background_fill="zinc",
            input_border_color="*secondary_300",
            input_shadow="*shadow_drop",
            input_shadow_focus="*shadow_drop_lg",
        )


seafoam = SeafoamCustom()


with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo:
    with gr.Column():
        gr.Markdown(
            """ ## Testrun

            Type in the box below and click the button to generate answers to your most pressing questions!

      """
        )

        with gr.Row():
            with gr.Column(scale=3):
                instruction = gr.Textbox(
                    placeholder="Enter your question here",
                    label="Question",
                    elem_id="q-input",
                )

                with gr.Box():
                    gr.Markdown("**Answer**")
                    output = gr.Markdown(elem_id="q-output")
                submit = gr.Button("Generate", variant="primary")
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    # cache_examples=True,
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output],
                )

    submit.click(response, inputs=[instruction], outputs=[output])
    instruction.submit(response, inputs=[instruction], outputs=[output])

demo.queue(concurrency_count=1, max_size=5).launch(debug=False, share=True)