ffreemt
Update embed_files
3227917
raw
history blame
26 kB
"""Refer to https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py.
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py
https://python.langchain.com/en/latest/getting_started/tutorials.html
gradio.Progress example:
https://colab.research.google.com/github/gradio-app/gradio/blob/main/demo/progress/run.ipynb#scrollTo=2.8891853944186117e%2B38
unstructured: python-magic python-docx python-pptx
from langchain.document_loaders import UnstructuredHTMLLoader
docs = []
# for doc in Path('docs').glob("*.pdf"):
for doc in Path('docs').glob("*"):
# for doc in Path('docs').glob("*.txt"):
docs.append(load_single_document(f"{doc}"))
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(docs)
model_name = "hkunlp/instructor-base"
embedding = HuggingFaceInstructEmbeddings(
model_name=model_name, model_kwargs={"device": device}
)
# constitution.pdf 54344, 72 chunks Wall time: 3min 13s CPU times: total: 9min 4s @golay
# test.txt 21286, 27 chunks, Wall time: 47 s CPU times: total: 2min 30s @golay
# both 99 chunks, Wall time: 5min 4s CPU times: total: 13min 31s
# chunks = len / 800
db = Chroma.from_documents(texts, embedding)
db = Chroma.from_documents(
texts,
embedding,
persist_directory=PERSIST_DIRECTORY,
client_settings=CHROMA_SETTINGS,
)
db.persist()
est. 1min/100 text1
# 中国共产党章程.txt qa
https://github.com/xanderma/Assistant-Attop/blob/master/Release/%E6%96%87%E5%AD%97%E7%89%88%E9%A2%98%E5%BA%93/31.%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AB%A0%E7%A8%8B.txt
colab CPU test.text constitution.pdf
CPU times: user 1min 27s, sys: 8.09 s, total: 1min 35s
Wall time: 1min 37s
"""
# pylint: disable=broad-except, unused-import, invalid-name, line-too-long, too-many-return-statements, import-outside-toplevel, no-name-in-module, no-member, too-many-branches, unused-variable, too-many-arguments, global-statement
import os
import time
from copy import deepcopy
from math import ceil
from pathlib import Path
# from tempfile import _TemporaryFileWrapper
from textwrap import dedent
from types import SimpleNamespace
from typing import List
import gradio as gr
import httpx
import more_itertools as mit
import torch
# from about_time import about_time
from charset_normalizer import detect
from chromadb.config import Settings
# from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain.llms import HuggingFacePipeline
# from epub2txt import epub2txt
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
from langchain.docstore.document import Document
from langchain.document_loaders import (
CSVLoader,
Docx2txtLoader,
PDFMinerLoader,
TextLoader,
)
from langchain.embeddings import (
SentenceTransformerEmbeddings,
) # HuggingFaceInstructEmbeddings,
from langchain.llms import HuggingFacePipeline, OpenAI
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import (
CharacterTextSplitter,
RecursiveCharacterTextSplitter,
)
from langchain.vectorstores import FAISS, Chroma
from loguru import logger
from PyPDF2 import PdfReader
from tqdm import tqdm
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline
from epub_loader import EpubLoader
from load_api_key import load_api_key, pk_base, sk_base
MODEL_NAME = "paraphrase-multilingual-mpnet-base-v2" # 1.11G
# fix timezone
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
api_key = load_api_key()
if api_key is not None:
os.environ.setdefault("OPENAI_API_KEY", api_key)
if api_key.startswith("sk-"):
os.environ.setdefault("OPENAI_API_BASE", sk_base)
elif api_key.startswith("pk-"):
os.environ.setdefault("OPENAI_API_BASE", pk_base)
# resetip
try:
url = "https://api.pawan.krd/resetip"
headers = {"Authorization": f"{api_key}"}
httpx.post(url, headers=headers)
except Exception as exc_:
logger.error(exc_)
raise
ROOT_DIRECTORY = Path(__file__).parent
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
# Define the Chroma settings
CHROMA_SETTINGS = Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=PERSIST_DIRECTORY,
anonymized_telemetry=False,
)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
ns_initial = SimpleNamespace(
db=None,
qa=None,
texts=[],
ingest_done=None,
files_info=None,
files_uploaded=[],
db_ready=None,
chunk_size=250,
chunk_overlap=250,
model_name=MODEL_NAME,
)
ns = deepcopy(ns_initial)
def load_single_document(file_path: str | Path) -> List[Document]:
"""Load a single document from a file path."""
try:
_ = Path(file_path).read_bytes()
encoding = detect(_).get("encoding")
if encoding is not None:
encoding = str(encoding)
except Exception as exc:
logger.error(f"{file_path}: {exc}")
encoding = None
file_path = Path(file_path).as_posix()
if Path(file_path).suffix in [".txt"]:
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Something is fishy, return empty str "
)
return [Document(page_content="", metadata={"source": file_path})]
try:
loader = TextLoader(file_path, encoding=encoding)
except Exception as exc:
logger.warning(f" {exc}, return dummy ")
return [Document(page_content="", metadata={"source": file_path})]
elif Path(file_path).suffix in [".pdf"]:
try:
loader = PDFMinerLoader(file_path)
except Exception as exc:
logger.error(exc)
return [Document(page_content="", metadata={"source": file_path})]
elif file_path.endswith(".csv"):
try:
loader = CSVLoader(file_path)
except Exception as exc:
logger.error(exc)
return [Document(page_content="", metadata={"source": file_path})]
elif Path(file_path).suffix in [".docx"]:
try:
loader = Docx2txtLoader(file_path)
except Exception as exc:
logger.error(f" {file_path} errors: {exc}")
return [Document(page_content="", metadata={"source": file_path})]
elif Path(file_path).suffix in [".epub"]:
try:
# _ = epub2txt(file_path)
loader = EpubLoader(file_path)
except Exception as exc:
logger.error(f" {file_path} errors: {exc}")
return [Document(page_content="", metadata={"source": file_path})]
else:
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Likely binary files, return empty str "
)
return [Document(page_content="", metadata={"source": file_path})]
try:
loader = TextLoader(file_path)
except Exception as exc:
logger.error(f" {exc}, returnning empty string")
return [Document(page_content="", metadata={"source": file_path})]
return loader.load() # use extend when combining
def get_pdf_text(pdf_docs):
"""docs-chat."""
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(f"{pdf}") # taking care of Path
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text, chunk_size=1000):
"""docs-chat."""
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=chunk_size, chunk_overlap=200, length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(
text_chunks,
vectorstore=None,
persist=True,
):
"""Gne vectorstore."""
# embedding = OpenAIEmbeddings()
# for HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
# embedding = HuggingFaceInstructEmbeddings(model_name=model_name)
model_name = MODEL_NAME
logger.info(f"Loading {model_name}")
embedding = SentenceTransformerEmbeddings(model_name=model_name)
logger.info(f"Done loading {model_name}")
if vectorstore is None:
vectorstore = "chroma"
if vectorstore.lower() in ["chroma"]:
logger.info(
"Doing vectorstore Chroma.from_texts(texts=text_chunks, embedding=embedding)"
)
if persist:
vectorstore = Chroma.from_texts(
texts=text_chunks,
embedding=embedding,
persist_directory=PERSIST_DIRECTORY,
client_settings=CHROMA_SETTINGS,
)
else:
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embedding)
logger.info(
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)"
)
return vectorstore
# if vectorstore.lower() not in ['chroma']
# TODO handle other cases
logger.info(
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)"
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embedding)
logger.info(
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)"
)
return vectorstore
def greet(name):
"""Test."""
logger.debug(f" name: [{name}] ")
return "Hello " + name + "!!"
def upload_files(files):
"""Upload files."""
file_paths = [file.name for file in files]
logger.info(file_paths)
ns.files_uploaded = file_paths
# return [str(elm) for elm in res]
return file_paths
# return ingest(file_paths)
def process_files(
# file_paths,
progress=gr.Progress(),
):
"""Process uploaded files."""
if not ns.files_uploaded:
return f"No files uploaded: {ns.files_uploaded}"
# wait for update before querying new ns.qa
ns.ingest_done = False
logger.debug(f"ns.files_uploaded: {ns.files_uploaded}")
# imgs = [None] * 24
# for img in progress.tqdm(imgs, desc="Loading from list"):
# time.sleep(0.1)
# imgs = [[None] * 8] * 3
# for img_set in progress.tqdm(imgs, desc="Nested list"):
# time.sleep(.2)
# for img in progress.tqdm(img_set, desc="inner list"):
# time.sleep(10.1)
# return "done..."
documents = []
if progress is None:
for file_path in ns.files_uploaded:
logger.debug(f"-Doing {file_path}")
try:
documents.extend(load_single_document(f"{file_path}"))
logger.debug("-Done reading files.")
except Exception as exc:
logger.error(f"-{file_path}: {exc}")
else:
for file_path in progress.tqdm(ns.files_uploaded, desc="Reading file(s)"):
logger.debug(f"Doing {file_path}")
try:
documents.extend(load_single_document(f"{file_path}"))
logger.debug("Done reading files.")
except Exception as exc:
logger.error(f"{file_path}: {exc}")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=ns.chunk_size, chunk_overlap=ns.chunk_overlap
)
texts = text_splitter.split_documents(documents)
logger.info(f"Loaded {len(ns.files_uploaded)} files ")
logger.info(f"Loaded {len(documents)} document(s) ")
logger.info(f"Split into {len(texts)} chunk(s) of text")
total = ceil(len(texts) / 101)
ns.texts = texts
ns.ingest_done = True
_ = [
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
for doc in documents
]
ns.files_info = _
_ = (
f"done file(s): {dict(ns.files_info)}, splitted to "
f"{total} chunk(s). \n\nThe following embedding takes "
f" {total} step(s). (Each step lasts about 18 secs "
" on a free tier instance on huggingface space.)"
)
return _
def embed_files(progress=gr.Progress()):
"""Embded ns.files_uploaded."""
# initialize if necessary
if ns.db is None:
logger.info(f"loading {ns.model_name:}")
for _ in progress.tqdm(range(1), desc="diggin..."):
embedding = SentenceTransformerEmbeddings(
model_name=ns.model_name, model_kwargs={"device": DEVICE}
)
logger.info("creating vectorstore")
ns.db = Chroma(
# persist_directory=PERSIST_DIRECTORY,
embedding_function=embedding,
# client_settings=CHROMA_SETTINGS,
)
logger.info("done creating vectorstore")
total = ceil(len(ns.texts) / 101)
if progress is None:
# for text in progress.tqdm(
for idx, text in enumerate(mit.chunked_even(ns.texts, 101)):
logger.debug(f"-{idx + 1} of {total}")
ns.db.add_documents(documents=text)
else:
# for text in progress.tqdm(
for idx, text in enumerate(
progress.tqdm(
mit.chunked_even(ns.texts, 101),
total=total,
desc="Processing docs",
)
):
logger.debug(f"{idx + 1} of {total}")
ns.db.add_documents(documents=text)
logger.debug(f" done all {total}")
# ns.qa = load_qa()
llm = OpenAI(temperature=0, max_tokens=1024) # type: ignore
retriever = ns.db.as_retriever()
ns.qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
# return_source_documents=True,
)
logger.debug(f"{ns.ingest_done=}, exit process_files")
_ = (
f"Done {total} chunk(s). Now "
"switch to Query Docs Tab to chat. "
"You can chat in a language you prefer, "
"independent of the document language. Have fun."
)
return _
def respond(message, chat_history):
"""Gen response."""
logger.debug(f"{ns.files_uploaded=}")
if not ns.files_uploaded: # no files processed yet
bot_message = "Upload some file(s) for processing first."
chat_history.append((message, bot_message))
return "", chat_history
logger.debug(f"{ns.ingest_done=}")
if not ns.ingest_done: # embedding database not doen yet
bot_message = (
"Waiting for ingest (embedding) to finish, "
"be patient... You can switch the 'Upload files' "
"Tab to check"
)
chat_history.append((message, bot_message))
return "", chat_history
_ = """
if ns.qa is None: # load qa one time
logger.info("Loading qa, need to do just one time.")
ns.qa = load_qa()
logger.info("Done loading qa, need to do just one time.")
# """
if ns.qa is None:
bot_message = "Looks like the bot is not ready. Try again later..."
chat_history.append((message, bot_message))
return "", chat_history
try:
res = ns.qa(message)
answer = res.get("result")
docs = res.get("source_documents")
if docs:
bot_message = f"{answer}\n({docs})"
else:
bot_message = f"{answer}"
except Exception as exc:
logger.error(exc)
bot_message = f"bummer! {exc}"
if "empty" in str(exc):
bot_message = f"{bot_message} (probably invalid apikey)"
chat_history.append((message, bot_message))
return "", chat_history
# pylint disable=unused-argument
def ingest(
file_paths: list[str | Path],
model_name: str = MODEL_NAME,
device_type=None,
chunk_size: int = 256,
chunk_overlap: int = 50,
):
"""Gen Chroma db."""
logger.info("\n\t Doing ingest...")
logger.debug(f" file_paths: {file_paths}")
logger.debug(f"type of file_paths: {type(file_paths)}")
# raise SystemExit(0)
if device_type is None:
if torch.cuda.is_available():
device_type = "cuda"
else:
device_type = "cpu"
if device_type in ["cpu", "CPU"]:
device = "cpu"
elif device_type in ["mps", "MPS"]:
device = "mps"
else:
device = "cuda"
#  Load documents and split in chunks
# logger.info(f"Loading documents from {SOURCE_DIRECTORY}")
# documents = load_documents(SOURCE_DIRECTORY)
documents = []
for file_path in file_paths:
# documents.append(load_single_document(f"{file_path}"))
logger.debug(f"Doing {file_path}")
documents.extend(load_single_document(f"{file_path}"))
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
texts = text_splitter.split_documents(documents)
logger.info(f"Loaded {len(file_paths)} files ")
logger.info(f"Loaded {len(documents)} documents ")
logger.info(f"Split into {len(texts)} chunks of text")
# Create embedding
# embedding = HuggingFaceInstructEmbeddings(
embedding = SentenceTransformerEmbeddings(
model_name=model_name, model_kwargs={"device": device}
)
# https://stackoverflow.com/questions/76048941/how-to-combine-two-chroma-databases
# db = Chroma(persist_directory=chroma_directory, embedding_function=embedding)
# db.add_documents(documents=texts1)
# mit.chunked_even(texts, 100)
db = Chroma(
# persist_directory=PERSIST_DIRECTORY,
embedding_function=embedding,
# client_settings=CHROMA_SETTINGS,
)
# for text in progress.tqdm(
for text in tqdm(mit.chunked_even(texts, 101), total=ceil(len(texts) / 101)):
db.add_documents(documents=text)
_ = """
with about_time() as atime: # type: ignore
db = Chroma.from_documents(
texts,
embedding,
persist_directory=PERSIST_DIRECTORY,
client_settings=CHROMA_SETTINGS,
)
logger.info(f"Time spent: {atime.duration_human}") # type: ignore
"""
logger.info(f"persist_directory: {PERSIST_DIRECTORY}")
# db.persist()
# db = None
# ns.db = db
ns.qa = db
logger.info("Done ingest")
_ = [
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
for doc in documents
]
ns.files_info = _
return _
# TheBloke/Wizard-Vicuna-7B-Uncensored-HF
# https://huggingface.co/TheBloke/vicuna-7B-1.1-HF
def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
"""Gen a local llm.
localgpt run_localgpt
https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2
with torch.device(“cuda”):
model = AutoModelForCausalLM.from_pretrained(“gpt2-large”, torch_dtype=torch.float16)
model = BetterTransformer.transform(model)
"""
tokenizer = LlamaTokenizer.from_pretrained(model_id)
if torch.cuda.is_available():
model = LlamaForCausalLM.from_pretrained(
model_id,
# load_in_8bit=True, # set these options if your GPU supports them!
# device_map=1 # "auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
else:
model = LlamaForCausalLM.from_pretrained(model_id)
local_llm = None
if model is not None: # to please pyright
pipe = pipeline(
"text-generation",
model=model, # type: ignore
tokenizer=tokenizer,
max_length=2048,
temperature=0,
top_p=0.95,
repetition_penalty=1.15,
)
local_llm = HuggingFacePipeline(pipeline=pipe)
return local_llm
def load_qa(device=None, model_name: str = MODEL_NAME):
"""Gen qa.
device = 'cpu'
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
embedding = HuggingFaceInstructEmbeddings(
"""
logger.info("Doing qa")
if device is None:
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
embedding = SentenceTransformerEmbeddings(
model_name=model_name, model_kwargs={"device": device}
)
# xl 4.96G, large 3.5G,
db = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=embedding,
client_settings=CHROMA_SETTINGS,
)
retriever = db.as_retriever()
# _ = """
# llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
llm = OpenAI(temperature=0, max_tokens=1024) # type: ignore
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
# return_source_documents=True,
)
# {"query": ..., "result": ..., "source_documents": ...}
return qa
# TODO: conversation_chain
# pylint: disable=unreachable
# model = 'gpt-3.5-turbo', default text-davinci-003
# max_tokens: int = 256 max_retries: int = 6
# openai_api_key: Optional[str] = None,
# openai_api_base: Optional[str] = None,
# llm = OpenAI(temperature=0, max_tokens=0)
llm = OpenAI(temperature=0, max_tokens=1024) # type: ignore
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
# retriever=vectorstore.as_retriever(),
retriever=db.as_retriever(),
memory=memory,
)
logger.info("Done qa")
return conversation_chain
# memory.clear()
# response = conversation_chain({'question': user_question})
# response['question'], response['answer']
def main1():
"""Lump codes."""
with gr.Blocks() as demo1:
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
demo1.launch()
logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")
openai_api_key = os.getenv("OPENAI_API_KEY")
openai_api_base = os.getenv("OPENAI_API_BASE")
logger.info(f"openai_api_key (env var/hf space SECRETS): {openai_api_key}")
logger.info(f"openai_api_base: {openai_api_base}")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# name = gr.Textbox(label="Name")
# greet_btn = gr.Button("Submit")
# output = gr.Textbox(label="Output Box")
# greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
#
# ### layout ###
with gr.Accordion("Info", open=False):
_ = """
# localgpt
Talk to your docs (.pdf, .docx, .epub, .txt .md and
other text docs). It
takes quite a while to ingest docs (10-30 min. depending
on net, RAM, CPU etc.).
Send empty query (hit Enter) to check embedding status and files info ([filename, numb of chars])
Homepage: https://huggingface.co/spaces/mikeee/localgpt
"""
gr.Markdown(dedent(_))
with gr.Tab("Upload files"):
# Upload files and generate vectorstore
with gr.Row():
file_output = gr.File()
# file_output = gr.Text()
# file_output = gr.DataFrame()
upload_button = gr.UploadButton(
"Click to upload",
# file_types=["*.pdf", "*.epub", "*.docx"],
file_count="multiple",
)
with gr.Row():
text2 = gr.Textbox("Gen embedding")
process_btn = gr.Button("Click to embed")
# reset_btn = gr.Button("Reset everything", visibile=False)
with gr.Tab("Query docs"):
# interactive chat
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Query")
clear = gr.Button("Clear")
# actions
def reset_all():
"""Reset ns."""
global ns
ns = deepcopy(ns_initial)
return f"reset done: ns={ns}"
# reset_btn.click(reset_all, [], text2)
upload_button.upload(upload_files, upload_button, file_output)
process_btn.click(process_files, [], text2)
# Query docs TAB
msg.submit(respond, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue(concurrency_count=20).launch()
_ = """
run_localgpt
device = 'cpu'
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
embedding = HuggingFaceInstructEmbeddings(
model_name=,
model_kwargs={"device": device}
)
# xl 4.96G, large 3.5G,
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embedding, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever()
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
query = 'a'
res = qa(query)
---
https://www.linkedin.com/pulse/build-qa-bot-over-private-data-openai-langchain-leo-wang
history = [】
def user(user_message, history):
# Get response from QA chain
response = qa({"question": user_message, "chat_history": history})
# Append user message and response to chat history
history.append((user_message, response["answer"]))]
---
https://llamahub.ai/l/file-unstructured
from pathlib import Path
from llama_index import download_loader
UnstructuredReader = download_loader("UnstructuredReader")
loader = UnstructuredReader()
documents = loader.load_data(file=Path('./10k_filing.html'))
# --
from pathlib import Path
from llama_index import download_loader
# SimpleDirectoryReader = download_loader("SimpleDirectoryReader")
# FileNotFoundError: [Errno 2] No such file or directory
documents = SimpleDirectoryReader('./data').load_data()
loader = SimpleDirectoryReader('./data', file_extractor={
".pdf": "UnstructuredReader",
".html": "UnstructuredReader",
".eml": "UnstructuredReader",
".pptx": "PptxReader"
})
documents = loader.load_data()
"""