multilingual-dokugpt / app-org.py
ffreemt
Update progressbar
50c6a2e
raw
history blame
16.7 kB
"""Refer to
https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py
https://python.langchain.com/en/latest/getting_started/tutorials.html
unstructured: python-magic python-docx python-pptx
from langchain.document_loaders import UnstructuredHTMLLoader
docs = []
# for doc in Path('docs').glob("*.pdf"):
for doc in Path('docs').glob("*"):
# for doc in Path('docs').glob("*.txt"):
docs.append(load_single_document(f"{doc}"))
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(docs)
model_name = "hkunlp/instructor-base"
embeddings = HuggingFaceInstructEmbeddings(
model_name=model_name, model_kwargs={"device": device}
)
# constitution.pdf 54344, 72 chunks Wall time: 3min 13s CPU times: total: 9min 4s @golay
# test.txt 21286, 27 chunks, Wall time: 47 s CPU times: total: 2min 30s @golay
# both 99 chunks, Wall time: 5min 4s CPU times: total: 13min 31s
# chunks = len / 800
db = Chroma.from_documents(texts, embeddings)
db = Chroma.from_documents(
texts,
embeddings,
persist_directory=PERSIST_DIRECTORY,
client_settings=CHROMA_SETTINGS,
)
db.persist()
# 中国共产党章程.txt qa
https://github.com/xanderma/Assistant-Attop/blob/master/Release/%E6%96%87%E5%AD%97%E7%89%88%E9%A2%98%E5%BA%93/31.%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AB%A0%E7%A8%8B.txt
colab CPU test.text constitution.pdf
CPU times: user 1min 27s, sys: 8.09 s, total: 1min 35s
Wall time: 1min 37s
"""
# pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long, too-many-return-statements, import-outside-toplevel, no-name-in-module, no-member
import os
import time
from pathlib import Path
from textwrap import dedent
from types import SimpleNamespace
import gradio as gr
import torch
from charset_normalizer import detect
from chromadb.config import Settings
from epub2txt import epub2txt
from langchain.chains import RetrievalQA
from langchain.docstore.document import Document
from langchain.document_loaders import (
CSVLoader,
Docx2txtLoader,
PDFMinerLoader,
TextLoader,
)
# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import (
# CharacterTextSplitter,
RecursiveCharacterTextSplitter,
)
# FAISS instead of PineCone
from langchain.vectorstores import Chroma # FAISS,
from loguru import logger
# from PyPDF2 import PdfReader # localgpt
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline
# import click
# from typing import List
# from utils import xlxs_to_csv
# load possible env such as OPENAI_API_KEY
# from dotenv import load_dotenv
# load_dotenv()load_dotenv()
# fix timezone
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
ROOT_DIRECTORY = Path(__file__).parent
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
# Define the Chroma settings
CHROMA_SETTINGS = Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=PERSIST_DIRECTORY,
anonymized_telemetry=False,
)
ns = SimpleNamespace(qa=None, ingest_done=None, files_info=None)
def load_single_document(file_path: str | Path) -> Document:
"""ingest.py"""
# Loads a single document from a file path
# encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8")
encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8")
if file_path.endswith(".txt"):
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Something is fishy, return empty str "
)
return Document(page_content="", metadata={"source": file_path})
try:
loader = TextLoader(file_path, encoding=encoding)
except Exception as exc:
logger.warning(f" {exc}, return dummy ")
return Document(page_content="", metadata={"source": file_path})
elif file_path.endswith(".pdf"):
loader = PDFMinerLoader(file_path)
elif file_path.endswith(".csv"):
loader = CSVLoader(file_path)
elif Path(file_path).suffix in [".docx"]:
try:
loader = Docx2txtLoader(file_path)
except Exception as exc:
logger.error(f" {file_path} errors: {exc}")
return Document(page_content="", metadata={"source": file_path})
elif Path(file_path).suffix in [".epub"]: # for epub? epub2txt unstructured
try:
_ = epub2txt(file_path)
except Exception as exc:
logger.error(f" {file_path} errors: {exc}")
return Document(page_content="", metadata={"source": file_path})
return Document(page_content=_, metadata={"source": file_path})
else:
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Likely binary files, return empty str "
)
return Document(page_content="", metadata={"source": file_path})
try:
loader = TextLoader(file_path)
except Exception as exc:
logger.error(f" {exc}, returnning empty string")
return Document(page_content="", metadata={"source": file_path})
return loader.load()[0]
def get_pdf_text(pdf_docs):
"""docs-chat."""
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(f"{pdf}") # taking care of Path
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
"""docs-chat."""
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
"""docs-chat."""
# embeddings = OpenAIEmbeddings()
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
logger.info(f"Loading {model_name}")
embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
logger.info(f"Done loading {model_name}")
logger.info(
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
logger.info(
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
)
return vectorstore
def greet(name):
"""Test."""
logger.debug(f" name: [{name}] ")
return "Hello " + name + "!!"
def upload_files(files):
"""Upload files."""
file_paths = [file.name for file in files]
logger.info(file_paths)
ns.ingest_done = False
res = ingest(file_paths)
logger.info(f"Processed:\n{res}")
# flag ns.qadone
ns.ingest_done = True
ns.files_info = res
# ns.qa = load_qa()
# return [str(elm) for elm in res]
return file_paths
# return ingest(file_paths)
def ingest(
file_paths: list[str | Path], model_name="hkunlp/instructor-base", device_type=None
):
"""Gen Chroma db.
torch.cuda.is_available()
file_paths =
['C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\41b53dd5f203b423f2dced44eaf56e72508b7bbe\\app.py',
'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\9390755bb391abc530e71a3946a7b50d463ba0ef\\README.md',
'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\3341f9a410a60ffa57bf4342f3018a3de689f729\\requirements.txt']
"""
logger.info("\n\t Doing ingest...")
if device_type is None:
if torch.cuda.is_available():
device_type = "cuda"
else:
device_type = "cpu"
if device_type in ["cpu", "CPU"]:
device = "cpu"
elif device_type in ["mps", "MPS"]:
device = "mps"
else:
device = "cuda"
#  Load documents and split in chunks
# logger.info(f"Loading documents from {SOURCE_DIRECTORY}")
# documents = load_documents(SOURCE_DIRECTORY)
documents = []
for file_path in file_paths:
documents.append(load_single_document(f"{file_path}"))
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
logger.info(f"Loaded {len(documents)} documents ")
logger.info(f"Split into {len(texts)} chunks of text")
# Create embeddings
embeddings = HuggingFaceInstructEmbeddings(
model_name=model_name, model_kwargs={"device": device}
)
db = Chroma.from_documents(
texts,
embeddings,
persist_directory=PERSIST_DIRECTORY,
client_settings=CHROMA_SETTINGS,
)
db.persist()
db = None
logger.info("Done ingest")
return [
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
for doc in documents
]
# TheBloke/Wizard-Vicuna-7B-Uncensored-HF
# https://huggingface.co/TheBloke/vicuna-7B-1.1-HF
def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
"""Gen a local llm.
localgpt run_localgpt
https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2
with torch.device(“cuda”):
model = AutoModelForCausalLM.from_pretrained(“gpt2-large”, torch_dtype=torch.float16)
model = BetterTransformer.transform(model)
"""
tokenizer = LlamaTokenizer.from_pretrained(model_id)
if torch.cuda.is_available():
model = LlamaForCausalLM.from_pretrained(
model_id,
# load_in_8bit=True, # set these options if your GPU supports them!
# device_map=1 # "auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
else:
model = LlamaForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_length=2048,
temperature=0,
top_p=0.95,
repetition_penalty=1.15,
)
local_llm = HuggingFacePipeline(pipeline=pipe)
return local_llm
def load_qa(device=None, model_name: str = "hkunlp/instructor-base"):
"""Gen qa."""
logger.info("Doing qa")
if device is None:
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# device = 'cpu'
# model_name = "hkunlp/instructor-xl"
# model_name = "hkunlp/instructor-large"
# model_name = "hkunlp/instructor-base"
embeddings = HuggingFaceInstructEmbeddings(
model_name=model_name, model_kwargs={"device": device}
)
# xl 4.96G, large 3.5G,
db = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=embeddings,
client_settings=CHROMA_SETTINGS,
)
retriever = db.as_retriever()
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
)
logger.info("Done qa")
return qa
def main1():
"""Lump codes"""
with gr.Blocks() as demo:
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
demo.launch()
def main():
"""Do blocks."""
logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")
openai_api_key = os.getenv("OPENAI_API_KEY")
logger.info(f"openai_api_key (env var/hf space SECRETS): {openai_api_key}")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# name = gr.Textbox(label="Name")
# greet_btn = gr.Button("Submit")
# output = gr.Textbox(label="Output Box")
# greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
with gr.Accordion("Info", open=False):
_ = """
# localgpt
Talk to your docs (.pdf, .docx, .epub, .txt .md and
other text docs). It
takes quite a while to ingest docs (10-30 min. depending
on net, RAM, CPU etc.).
Send empty query (hit Enter) to check embedding status and files info ([filename, numb of chars])
Homepage: https://huggingface.co/spaces/mikeee/localgpt
"""
gr.Markdown(dedent(_))
# with gr.Accordion("Upload files", open=True):
with gr.Tab("Upload files"):
# Upload files and generate embeddings database
file_output = gr.File()
upload_button = gr.UploadButton(
"Click to upload files",
# file_types=["*.pdf", "*.epub", "*.docx"],
file_count="multiple",
)
upload_button.upload(upload_files, upload_button, file_output)
with gr.Tab("Query docs"):
# interactive chat
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Query")
clear = gr.Button("Clear")
def respond(message, chat_history):
# bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
if ns.ingest_done is None: # no files processed yet
bot_message = "Upload some file(s) for processing first."
chat_history.append((message, bot_message))
return "", chat_history
if not ns.ingest_done: # embedding database not doen yet
bot_message = (
"Waiting for ingest (embedding) to finish, "
"be patient... You can switch the 'Upload files' "
"Tab to check"
)
chat_history.append((message, bot_message))
return "", chat_history
if ns.qa is None: # load qa one time
logger.info("Loading qa, need to do just one time.")
ns.qa = load_qa()
try:
res = ns.qa(message)
answer, docs = res["result"], res["source_documents"]
bot_message = f"{answer} ({docs})"
except Exception as exc:
logger.error(exc)
bot_message = f"bummer! {exc}"
chat_history.append((message, bot_message))
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
try:
from google import colab # noqa
share = True # start share when in colab
except Exception:
share = False
demo.launch(share=share)
if __name__ == "__main__":
main()
_ = """
run_localgpt
device = 'cpu'
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
embeddings = HuggingFaceInstructEmbeddings(
model_name=,
model_kwargs={"device": device}
)
# xl 4.96G, large 3.5G,
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever()
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
query = 'a'
res = qa(query)
---
https://www.linkedin.com/pulse/build-qa-bot-over-private-data-openai-langchain-leo-wang
history = [】
def user(user_message, history):
# Get response from QA chain
response = qa({"question": user_message, "chat_history": history})
# Append user message and response to chat history
history.append((user_message, response["answer"]))]
---
https://llamahub.ai/l/file-unstructured
from pathlib import Path
from llama_index import download_loader
UnstructuredReader = download_loader("UnstructuredReader")
loader = UnstructuredReader()
documents = loader.load_data(file=Path('./10k_filing.html'))
# --
from pathlib import Path
from llama_index import download_loader
# SimpleDirectoryReader = download_loader("SimpleDirectoryReader")
# FileNotFoundError: [Errno 2] No such file or directory
documents = SimpleDirectoryReader('./data').load_data()
loader = SimpleDirectoryReader('./data', file_extractor={
".pdf": "UnstructuredReader",
".html": "UnstructuredReader",
".eml": "UnstructuredReader",
".pptx": "PptxReader"
})
documents = loader.load_data()
"""