File size: 16,688 Bytes
50c6a2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
"""Refer to
https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py

https://python.langchain.com/en/latest/getting_started/tutorials.html

unstructured: python-magic python-docx python-pptx
from langchain.document_loaders import UnstructuredHTMLLoader

docs = []
# for doc in Path('docs').glob("*.pdf"):
for doc in Path('docs').glob("*"):
# for doc in Path('docs').glob("*.txt"):
    docs.append(load_single_document(f"{doc}"))
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(docs)

model_name = "hkunlp/instructor-base"
embeddings = HuggingFaceInstructEmbeddings(
    model_name=model_name, model_kwargs={"device": device}
)

# constitution.pdf 54344,   72 chunks Wall time: 3min 13s CPU times: total: 9min 4s @golay
# test.txt 21286,           27 chunks, Wall time: 47 s CPU times: total: 2min 30s @golay
# both                      99 chunks, Wall time: 5min 4s CPU times: total: 13min 31s
# chunks = len / 800

db = Chroma.from_documents(texts, embeddings)

db = Chroma.from_documents(
    texts,
    embeddings,
    persist_directory=PERSIST_DIRECTORY,
    client_settings=CHROMA_SETTINGS,
)
db.persist()

# 中国共产党章程.txt qa
https://github.com/xanderma/Assistant-Attop/blob/master/Release/%E6%96%87%E5%AD%97%E7%89%88%E9%A2%98%E5%BA%93/31.%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AB%A0%E7%A8%8B.txt

colab CPU test.text constitution.pdf
CPU times: user 1min 27s, sys: 8.09 s, total: 1min 35s
Wall time: 1min 37s

"""
# pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long, too-many-return-statements, import-outside-toplevel, no-name-in-module, no-member
import os
import time
from pathlib import Path
from textwrap import dedent
from types import SimpleNamespace

import gradio as gr
import torch
from charset_normalizer import detect
from chromadb.config import Settings
from epub2txt import epub2txt
from langchain.chains import RetrievalQA
from langchain.docstore.document import Document
from langchain.document_loaders import (
    CSVLoader,
    Docx2txtLoader,
    PDFMinerLoader,
    TextLoader,
)

# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import (
    # CharacterTextSplitter,
    RecursiveCharacterTextSplitter,
)

# FAISS instead of PineCone
from langchain.vectorstores import Chroma  # FAISS,
from loguru import logger
# from PyPDF2 import PdfReader  # localgpt
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline

# import click
# from typing import List

# from utils import xlxs_to_csv

# load possible env such as OPENAI_API_KEY
# from dotenv import load_dotenv

# load_dotenv()load_dotenv()

# fix timezone
os.environ["TZ"] = "Asia/Shanghai"
try:
    time.tzset()  # type: ignore # pylint: disable=no-member
except Exception:
    # Windows
    logger.warning("Windows, cant run time.tzset()")

ROOT_DIRECTORY = Path(__file__).parent
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"

# Define the Chroma settings
CHROMA_SETTINGS = Settings(
    chroma_db_impl="duckdb+parquet",
    persist_directory=PERSIST_DIRECTORY,
    anonymized_telemetry=False,
)
ns = SimpleNamespace(qa=None, ingest_done=None, files_info=None)


def load_single_document(file_path: str | Path) -> Document:
    """ingest.py"""
    # Loads a single document from a file path
    # encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8")
    encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8")
    if file_path.endswith(".txt"):
        if encoding is None:
            logger.warning(
                f" {file_path}'s encoding is None "
                "Something is fishy, return empty str "
            )
            return Document(page_content="", metadata={"source": file_path})

        try:
            loader = TextLoader(file_path, encoding=encoding)
        except Exception as exc:
            logger.warning(f" {exc}, return dummy ")
            return Document(page_content="", metadata={"source": file_path})

    elif file_path.endswith(".pdf"):
        loader = PDFMinerLoader(file_path)
    elif file_path.endswith(".csv"):
        loader = CSVLoader(file_path)
    elif Path(file_path).suffix in [".docx"]:
        try:
            loader = Docx2txtLoader(file_path)
        except Exception as exc:
            logger.error(f" {file_path} errors: {exc}")
            return Document(page_content="", metadata={"source": file_path})
    elif Path(file_path).suffix in [".epub"]:  # for epub? epub2txt unstructured
        try:
            _ = epub2txt(file_path)
        except Exception as exc:
            logger.error(f" {file_path} errors: {exc}")
            return Document(page_content="", metadata={"source": file_path})
        return Document(page_content=_, metadata={"source": file_path})
    else:
        if encoding is None:
            logger.warning(
                f" {file_path}'s encoding is None "
                "Likely binary files, return empty str "
            )
            return Document(page_content="", metadata={"source": file_path})
        try:
            loader = TextLoader(file_path)
        except Exception as exc:
            logger.error(f" {exc}, returnning empty string")
            return Document(page_content="", metadata={"source": file_path})

    return loader.load()[0]


def get_pdf_text(pdf_docs):
    """docs-chat."""
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(f"{pdf}")  # taking care of Path
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


def get_text_chunks(text):
    """docs-chat."""
    text_splitter = CharacterTextSplitter(
        separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks):
    """docs-chat."""
    # embeddings = OpenAIEmbeddings()
    model_name = "hkunlp/instructor-xl"
    model_name = "hkunlp/instructor-large"
    model_name = "hkunlp/instructor-base"
    logger.info(f"Loading {model_name}")
    embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
    logger.info(f"Done loading {model_name}")

    logger.info(
        "Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
    )
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    logger.info(
        "Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
    )

    return vectorstore


def greet(name):
    """Test."""
    logger.debug(f" name: [{name}] ")
    return "Hello " + name + "!!"


def upload_files(files):
    """Upload files."""
    file_paths = [file.name for file in files]
    logger.info(file_paths)

    ns.ingest_done = False
    res = ingest(file_paths)
    logger.info(f"Processed:\n{res}")

    # flag ns.qadone
    ns.ingest_done = True
    ns.files_info = res

    # ns.qa = load_qa()

    # return [str(elm) for elm in res]
    return file_paths

    # return ingest(file_paths)


def ingest(
    file_paths: list[str | Path], model_name="hkunlp/instructor-base", device_type=None
):
    """Gen Chroma db.

    torch.cuda.is_available()

    file_paths =
    ['C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\41b53dd5f203b423f2dced44eaf56e72508b7bbe\\app.py',
    'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\9390755bb391abc530e71a3946a7b50d463ba0ef\\README.md',
    'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\3341f9a410a60ffa57bf4342f3018a3de689f729\\requirements.txt']
    """
    logger.info("\n\t Doing ingest...")

    if device_type is None:
        if torch.cuda.is_available():
            device_type = "cuda"
        else:
            device_type = "cpu"

    if device_type in ["cpu", "CPU"]:
        device = "cpu"
    elif device_type in ["mps", "MPS"]:
        device = "mps"
    else:
        device = "cuda"

    #  Load documents and split in chunks
    # logger.info(f"Loading documents from {SOURCE_DIRECTORY}")
    # documents = load_documents(SOURCE_DIRECTORY)

    documents = []
    for file_path in file_paths:
        documents.append(load_single_document(f"{file_path}"))

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    texts = text_splitter.split_documents(documents)

    logger.info(f"Loaded {len(documents)} documents ")
    logger.info(f"Split into {len(texts)} chunks of text")

    # Create embeddings
    embeddings = HuggingFaceInstructEmbeddings(
        model_name=model_name, model_kwargs={"device": device}
    )

    db = Chroma.from_documents(
        texts,
        embeddings,
        persist_directory=PERSIST_DIRECTORY,
        client_settings=CHROMA_SETTINGS,
    )
    db.persist()
    db = None
    logger.info("Done ingest")

    return [
        [Path(doc.metadata.get("source")).name, len(doc.page_content)]
        for doc in documents
    ]


# TheBloke/Wizard-Vicuna-7B-Uncensored-HF
# https://huggingface.co/TheBloke/vicuna-7B-1.1-HF
def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
    """Gen a local llm.

    localgpt run_localgpt
    https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2
    with torch.device(“cuda”):
        model = AutoModelForCausalLM.from_pretrained(“gpt2-large”, torch_dtype=torch.float16)

        model = BetterTransformer.transform(model)
    """
    tokenizer = LlamaTokenizer.from_pretrained(model_id)
    if torch.cuda.is_available():
        model = LlamaForCausalLM.from_pretrained(
            model_id,
            # load_in_8bit=True, # set these options if your GPU supports them!
            # device_map=1  # "auto",
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
        )
    else:
        model = LlamaForCausalLM.from_pretrained(model_id)

    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_length=2048,
        temperature=0,
        top_p=0.95,
        repetition_penalty=1.15,
    )

    local_llm = HuggingFacePipeline(pipeline=pipe)
    return local_llm


def load_qa(device=None, model_name: str = "hkunlp/instructor-base"):
    """Gen qa."""
    logger.info("Doing qa")
    if device is None:
        if torch.cuda.is_available():
            device = "cuda"
        else:
            device = "cpu"

    # device = 'cpu'
    # model_name = "hkunlp/instructor-xl"
    # model_name = "hkunlp/instructor-large"
    # model_name = "hkunlp/instructor-base"
    embeddings = HuggingFaceInstructEmbeddings(
        model_name=model_name, model_kwargs={"device": device}
    )
    # xl 4.96G, large 3.5G,
    db = Chroma(
        persist_directory=PERSIST_DIRECTORY,
        embedding_function=embeddings,
        client_settings=CHROMA_SETTINGS,
    )
    retriever = db.as_retriever()

    llm = gen_local_llm()  # "TheBloke/vicuna-7B-1.1-HF" 12G?

    qa = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True,
    )

    logger.info("Done qa")

    return qa


def main1():
    """Lump codes"""
    with gr.Blocks() as demo:
        iface = gr.Interface(fn=greet, inputs="text", outputs="text")
        iface.launch()

    demo.launch()


def main():
    """Do blocks."""
    logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")

    openai_api_key = os.getenv("OPENAI_API_KEY")
    logger.info(f"openai_api_key (env var/hf space SECRETS): {openai_api_key}")

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        # name = gr.Textbox(label="Name")
        # greet_btn = gr.Button("Submit")
        # output = gr.Textbox(label="Output Box")
        # greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
        with gr.Accordion("Info", open=False):
            _ = """
                # localgpt
                Talk to your docs (.pdf, .docx, .epub, .txt .md and
                other text docs). It
                takes quite a while to ingest docs (10-30 min. depending
                on net, RAM, CPU etc.).

                Send empty query (hit Enter) to check embedding status and files info ([filename, numb of chars])

                Homepage: https://huggingface.co/spaces/mikeee/localgpt
                """
            gr.Markdown(dedent(_))

        # with gr.Accordion("Upload files", open=True):
        with gr.Tab("Upload files"):
            # Upload files and generate embeddings database
            file_output = gr.File()
            upload_button = gr.UploadButton(
                "Click to upload files",
                # file_types=["*.pdf", "*.epub", "*.docx"],
                file_count="multiple",
            )
            upload_button.upload(upload_files, upload_button, file_output)

        with gr.Tab("Query docs"):
            # interactive chat
            chatbot = gr.Chatbot()
            msg = gr.Textbox(label="Query")
            clear = gr.Button("Clear")

            def respond(message, chat_history):
                # bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
                if ns.ingest_done is None:  # no files processed yet
                    bot_message = "Upload some file(s) for processing first."
                    chat_history.append((message, bot_message))
                    return "", chat_history

                if not ns.ingest_done:  # embedding database not doen yet
                    bot_message = (
                        "Waiting for ingest (embedding) to finish, "
                        "be patient... You can switch the 'Upload files' "
                        "Tab to check"
                    )
                    chat_history.append((message, bot_message))
                    return "", chat_history

                if ns.qa is None:  # load qa one time
                    logger.info("Loading qa, need to do just one time.")
                    ns.qa = load_qa()

                try:
                    res = ns.qa(message)
                    answer, docs = res["result"], res["source_documents"]
                    bot_message = f"{answer} ({docs})"
                except Exception as exc:
                    logger.error(exc)
                    bot_message = f"bummer! {exc}"

                chat_history.append((message, bot_message))

                return "", chat_history

            msg.submit(respond, [msg, chatbot], [msg, chatbot])
            clear.click(lambda: None, None, chatbot, queue=False)

    try:
        from google import colab  # noqa

        share = True  # start share when in colab
    except Exception:
        share = False
    demo.launch(share=share)


if __name__ == "__main__":
    main()

_ = """
run_localgpt
device = 'cpu'
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
embeddings = HuggingFaceInstructEmbeddings(
    model_name=,
    model_kwargs={"device": device}
)
# xl 4.96G, large 3.5G,
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever()

llm = gen_local_llm()  # "TheBloke/vicuna-7B-1.1-HF" 12G?

qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)

query = 'a'
res = qa(query)

---
https://www.linkedin.com/pulse/build-qa-bot-over-private-data-openai-langchain-leo-wang

history = [】

def user(user_message, history):
    # Get response from QA chain
    response = qa({"question": user_message, "chat_history": history})
    # Append user message and response to chat history
    history.append((user_message, response["answer"]))]

---
https://llamahub.ai/l/file-unstructured

from pathlib import Path
from llama_index import download_loader

UnstructuredReader = download_loader("UnstructuredReader")

loader = UnstructuredReader()
documents = loader.load_data(file=Path('./10k_filing.html'))

# --
from pathlib import Path
from llama_index import download_loader

# SimpleDirectoryReader = download_loader("SimpleDirectoryReader")
# FileNotFoundError: [Errno 2] No such file or directory

documents = SimpleDirectoryReader('./data').load_data()

loader = SimpleDirectoryReader('./data', file_extractor={
  ".pdf": "UnstructuredReader",
  ".html": "UnstructuredReader",
  ".eml": "UnstructuredReader",
  ".pptx": "PptxReader"
})
documents = loader.load_data()
"""