Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
from cv2.ximgproc import guidedFilter | |
from imgutils.data import load_image | |
from imgutils.restore import restore_with_nafnet, restore_with_scunet | |
def clean_adverse( | |
input_image: Image.Image, | |
diameter: float = 5, | |
sigma_color: float = 8, | |
sigma_space: float = 8, | |
radius: float = 4, | |
eps: float = 16, | |
) -> Image.Image: | |
img = np.array(input_image).astype(np.float32) | |
y = img.copy() | |
for _ in range(64): | |
y = cv2.bilateralFilter(y, diameter, sigma_color, sigma_space) | |
for _ in range(4): | |
y = guidedFilter(img, y, radius, eps) | |
output_image = Image.fromarray(y.clip(0, 255).astype(np.uint8)) | |
return output_image | |
def clean( | |
image: Image.Image, | |
diameter: float = 5, | |
sigma_color: float = 8, | |
sigma_space: float = 8, | |
radius: float = 4, | |
eps: float = 16, | |
use_scunet_clean: bool = False, | |
use_nafnet_clean: bool = False | |
) -> Image.Image: | |
image = load_image(image) | |
image = clean_adverse(image, diameter, sigma_color, sigma_space, radius, eps) | |
if use_scunet_clean: | |
image = restore_with_scunet(image) | |
if use_nafnet_clean: | |
image = restore_with_nafnet(image) | |
return image | |
if __name__ == '__main__': | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr_input_image = gr.Image(label='Input Image', type="pil") | |
gr_submit = gr.Button(value='MIST = MIST is Stupid Trash') | |
with gr.Accordion("Advanced Config", open=False): | |
diameter_slider = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=5, | |
label="Diameter (default = 5)", | |
interactive=True, | |
) | |
sigma_color_slider = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=8, | |
label="SigmaColor (default = 8)", | |
interactive=True, | |
) | |
sigma_space_slider = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=8, | |
label="SigmaSpace (default = 8)", | |
interactive=True, | |
) | |
radius_slider = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=4, | |
label="Radius (default = 4)", | |
interactive=True, | |
) | |
eps_slider = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=16, | |
label="Accuracy (default = 16)", | |
interactive=True, | |
) | |
with gr.Accordion("Extra Restoration", open=False): | |
gr_scunet = gr.Checkbox(label='Use SCUNET', value=False) | |
gr_nafnet = gr.Checkbox(label='Use NAFNET', value=False) | |
with gr.Column(): | |
gr_output_image = gr.Image(label='Output Image', type="pil") | |
gr_submit.click( | |
fn=clean, | |
inputs=[ | |
gr_input_image, | |
diameter_slider, | |
sigma_color_slider, | |
sigma_space_slider, | |
radius_slider, | |
eps_slider, | |
gr_scunet, | |
gr_nafnet, | |
], | |
outputs=[gr_output_image], | |
) | |
demo.queue(os.cpu_count()).launch() | |