File size: 7,230 Bytes
2cd2c3f
cd34982
4e3a320
2cd2c3f
 
 
 
 
 
 
 
 
 
cd34982
2cd2c3f
cd34982
 
 
 
 
 
 
 
 
 
 
 
 
2cd2c3f
 
 
cd34982
 
 
 
2cd2c3f
 
cd34982
 
 
2cd2c3f
 
 
 
 
 
 
 
bf71338
cd34982
 
 
 
 
 
 
 
 
 
 
 
bf71338
 
2cd2c3f
 
 
bf71338
cd34982
 
 
 
 
 
 
 
 
2cd2c3f
 
 
 
 
 
 
 
 
4e3a320
 
 
 
 
 
 
 
2cd2c3f
 
 
4e3a320
bf71338
cd34982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf71338
 
cd34982
 
 
2cd2c3f
 
 
 
 
 
bf71338
 
 
cd34982
 
 
 
 
 
 
 
 
 
 
 
bf71338
 
 
 
2cd2c3f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import random
import textwrap

import cv2
import gradio as gr
import numpy as np
from PIL import Image
from cv2.ximgproc import guidedFilter
from imgutils.data import load_image
from imgutils.restore import restore_with_nafnet, restore_with_scunet


def dynamic_clean_adverse(
        input_image: Image.Image,
        diameter_min: int = 4,
        diameter_max: int = 6,
        sigma_color_min: float = 6.0,
        sigma_color_max: float = 10.0,
        sigma_space_min: float = 6.0,
        sigma_space_max: float = 10.0,
        radius_min: int = 3,
        radius_max: int = 6,
        eps_min: float = 16.0,
        eps_max: float = 24.0,
        b_iters: int = 64,
        g_iters: int = 4,
):
    img = np.array(input_image).astype(np.float32)
    y = img.copy()

    for _ in range(b_iters):
        diameter = random.randint(diameter_min, diameter_max)
        sigma_color = random.random() * (sigma_color_max - sigma_color_min) + sigma_color_min
        sigma_space = random.random() * (sigma_space_max - sigma_space_min) + sigma_space_min
        y = cv2.bilateralFilter(y, diameter, sigma_color, sigma_space)

    for _ in range(g_iters):
        radius = random.randint(radius_min, radius_max)
        eps = random.random() * (eps_max - eps_min) + eps_min
        y = guidedFilter(img, y, radius, eps)

    output_image = Image.fromarray(y.clip(0, 255).astype(np.uint8))
    return output_image


def clean(
        image: Image.Image,

        diameter_min: int = 4,
        diameter_max: int = 6,
        sigma_color_min: float = 6.0,
        sigma_color_max: float = 10.0,
        sigma_space_min: float = 6.0,
        sigma_space_max: float = 10.0,
        radius_min: int = 3,
        radius_max: int = 6,
        eps_min: float = 16.0,
        eps_max: float = 24.0,
        b_iters: int = 64,
        g_iters: int = 4,

        use_scunet_clean: bool = False,
        use_nafnet_clean: bool = False
) -> Image.Image:
    image = load_image(image)

    image = dynamic_clean_adverse(
        image,
        diameter_min, diameter_max,
        sigma_color_min, sigma_color_max,
        sigma_space_min, sigma_space_max,
        radius_min, radius_max,
        eps_min, eps_max,
        b_iters, g_iters
    )
    if use_scunet_clean:
        image = restore_with_scunet(image)
    if use_nafnet_clean:
        image = restore_with_nafnet(image)
    return image


if __name__ == '__main__':
    with gr.Blocks() as demo:
        with gr.Row():
            gr_markdown = gr.Markdown(textwrap.dedent("""
                Cleaner for [MIST](https://github.com/mist-project/mist-v2)(**M**IST **I**s **S**tupid **T**rash) noises.

                Inspired by https://github.com/lllyasviel/AdverseCleaner

                * **Update 2023.12.18**, allow random dynamic adversarial clean and iterate steps.
            """).strip())
        with gr.Row():
            with gr.Column():
                gr_input_image = gr.Image(label='Input Image', type="pil")
                gr_submit = gr.Button(value='MIST = MIST is Stupid Trash', variant='primary')
                with gr.Accordion("Advanced Config", open=False):
                    with gr.Row():
                        gr_diameter_min = gr.Slider(
                            minimum=1, maximum=30, step=1, value=4,
                            label="Diameter Min (default = 4)", interactive=True,
                        )
                        gr_diameter_max = gr.Slider(
                            minimum=1, maximum=30, step=1, value=6,
                            label="Diameter Max (default = 6)", interactive=True,
                        )

                    with gr.Row():
                        gr_sigma_color_min = gr.Slider(
                            minimum=1, maximum=30, step=1, value=6,
                            label="SigmaColor Min (default = 6)", interactive=True,
                        )
                        gr_sigma_color_max = gr.Slider(
                            minimum=1, maximum=30, step=1, value=10,
                            label="SigmaColor Max (default = 10)", interactive=True,
                        )

                    with gr.Row():
                        gr_sigma_space_min = gr.Slider(
                            minimum=1, maximum=30, step=1, value=6,
                            label="SigmaSpace Min (default = 6)", interactive=True,
                        )
                        gr_sigma_space_max = gr.Slider(
                            minimum=1, maximum=30, step=1, value=10,
                            label="SigmaSpace Max (default = 10)", interactive=True,
                        )

                    with gr.Row():
                        gr_radius_min = gr.Slider(
                            minimum=1, maximum=30, step=1, value=3,
                            label="Radius Min (default = 3)", interactive=True,
                        )
                        gr_radius_max = gr.Slider(
                            minimum=1, maximum=30, step=1, value=6,
                            label="Radius Max (default = 6)", interactive=True,
                        )

                    with gr.Row():
                        gr_eps_min = gr.Slider(
                            minimum=1, maximum=30, step=1, value=16,
                            label="Accuracy Min (default = 16)", interactive=True,
                        )
                        gr_eps_max = gr.Slider(
                            minimum=1, maximum=30, step=1, value=24,
                            label="Accuracy Max (default = 24)", interactive=True,
                        )

                    with gr.Row():
                        gr_b_iters = gr.Slider(
                            minimum=1, maximum=256, step=1, value=64,
                            label="Bilateral Filter Iters (default = 64)", interactive=True,
                        )
                        gr_g_iters = gr.Slider(
                            minimum=1, maximum=32, step=1, value=4,
                            label="Guided Filter Iters (default = 4)", interactive=True,
                        )

                with gr.Accordion("Extra Restoration", open=False):
                    with gr.Row():
                        gr_scunet = gr.Checkbox(label='Use SCUNET', value=False)
                        gr_nafnet = gr.Checkbox(label='Use NAFNET', value=False)

            with gr.Column():
                gr_output_image = gr.Image(label='Output Image', type="pil")

            gr_submit.click(
                fn=clean,
                inputs=[
                    gr_input_image,

                    gr_diameter_min,
                    gr_diameter_max,
                    gr_sigma_color_min,
                    gr_sigma_color_max,
                    gr_sigma_space_min,
                    gr_sigma_space_max,
                    gr_radius_min,
                    gr_radius_max,
                    gr_eps_min,
                    gr_eps_max,
                    gr_b_iters,
                    gr_g_iters,

                    gr_scunet,
                    gr_nafnet,
                ],
                outputs=[gr_output_image],
            )

    demo.queue(os.cpu_count()).launch()