import gradio as gr import pandas as pd from css_html_js import custom_css TITLE = """

🇲🇾 Malaysian Speech-to-Text Leaderboard

""" INTRODUCTION_TEXT = """ 📐 The 🇲🇾 Malaysian Speech-to-Text Leaderboard aims to track, rank and evaluate Malaysian Speech-to-Text models. All notebooks at https://github.com/mesolitica/malaysian-stt-benchmarks ## Dataset 📈 We evaluate models based on 2 datasets, 1. Fleurs MY-MS test set, Malay language, https://huggingface.co/datasets/malaysia-ai/fleurs-my-ms 2. IMDA TTS first 700 audio files, English language but with Manglish slang, https://huggingface.co/datasets/mesolitica/IMDA-TTS During test we, 1. Lowercase. 2. Remove punctuations. """ open_source = [ { 'model': 'openai/whisper-large-v3', 'Fleurs MY-MS CER': 0.027414635425413655, 'Fleurs MY-MS WER': 0.0912705436045907, 'IMDA TTS CER': 0.016648493852990828, 'IMDA TTS WER': 0.0386282289139432, }, { 'model': 'openai/whisper-medium', 'Fleurs MY-MS CER': 0.045260198639505075, 'Fleurs MY-MS WER': 0.14913723876746685, 'IMDA TTS CER': 0.02065587879424904, 'IMDA TTS WER': 0.047277690563404855, }, { 'model': 'openai/whisper-small', 'Fleurs MY-MS CER': 0.07028889922090295, 'Fleurs MY-MS WER': 0.2327510905228186, 'IMDA TTS CER': 0.024812471688517194, 'IMDA TTS WER': 0.058901277294134434, }, { 'model': 'openai/whisper-base', 'Fleurs MY-MS CER': 0.24820848114299138, 'Fleurs MY-MS WER': 0.5164123884823085, 'IMDA TTS CER': 0.03914533450681607, 'IMDA TTS WER': 0.08951682444539587, }, { 'model': 'mesolitica/malaysian-whisper-medium', }, { 'model': 'mesolitica/malaysian-whisper-small', 'Fleurs MY-MS CER': 0.03596621199151582, 'Fleurs MY-MS WER': 0.12024457480764372, 'IMDA TTS CER': 0.024228721439634855, 'IMDA TTS WER': 0.05546294182008469, }, { 'model': 'mesolitica/malaysian-whisper-base', 'Fleurs MY-MS CER': 0.07478803508650385, 'Fleurs MY-MS WER': 0.21823941044294087, 'IMDA TTS CER': 0.03982418421412676, 'IMDA TTS WER': 0.08917690642690643, }, { 'model': 'mesolitica/malaysian-whisper-tiny', }, ] data = pd.DataFrame(open_source) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") gr.DataFrame(data) demo.launch()