import numpy as np import torch from chemical import INIT_CRDS PARAMS = { "DMIN" : 2.0, "DMAX" : 20.0, "DBINS" : 36, "ABINS" : 36, } # ============================================================ def get_pair_dist(a, b): """calculate pair distances between two sets of points Parameters ---------- a,b : pytorch tensors of shape [batch,nres,3] store Cartesian coordinates of two sets of atoms Returns ------- dist : pytorch tensor of shape [batch,nres,nres] stores paitwise distances between atoms in a and b """ dist = torch.cdist(a, b, p=2) return dist # ============================================================ def get_ang(a, b, c): """calculate planar angles for all consecutive triples (a[i],b[i],c[i]) from Cartesian coordinates of three sets of atoms a,b,c Parameters ---------- a,b,c : pytorch tensors of shape [batch,nres,3] store Cartesian coordinates of three sets of atoms Returns ------- ang : pytorch tensor of shape [batch,nres] stores resulting planar angles """ v = a - b w = c - b v /= torch.norm(v, dim=-1, keepdim=True) w /= torch.norm(w, dim=-1, keepdim=True) vw = torch.sum(v*w, dim=-1) return torch.acos(vw) # ============================================================ def get_dih(a, b, c, d): """calculate dihedral angles for all consecutive quadruples (a[i],b[i],c[i],d[i]) given Cartesian coordinates of four sets of atoms a,b,c,d Parameters ---------- a,b,c,d : pytorch tensors of shape [batch,nres,3] store Cartesian coordinates of four sets of atoms Returns ------- dih : pytorch tensor of shape [batch,nres] stores resulting dihedrals """ b0 = a - b b1 = c - b b2 = d - c b1 /= torch.norm(b1, dim=-1, keepdim=True) v = b0 - torch.sum(b0*b1, dim=-1, keepdim=True)*b1 w = b2 - torch.sum(b2*b1, dim=-1, keepdim=True)*b1 x = torch.sum(v*w, dim=-1) y = torch.sum(torch.cross(b1,v,dim=-1)*w, dim=-1) return torch.atan2(y, x) # ============================================================ def xyz_to_c6d(xyz, params=PARAMS): """convert cartesian coordinates into 2d distance and orientation maps Parameters ---------- xyz : pytorch tensor of shape [batch,nres,3,3] stores Cartesian coordinates of backbone N,Ca,C atoms Returns ------- c6d : pytorch tensor of shape [batch,nres,nres,4] stores stacked dist,omega,theta,phi 2D maps """ batch = xyz.shape[0] nres = xyz.shape[1] # three anchor atoms N = xyz[:,:,0] Ca = xyz[:,:,1] C = xyz[:,:,2] # recreate Cb given N,Ca,C b = Ca - N c = C - Ca a = torch.cross(b, c, dim=-1) Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca # 6d coordinates order: (dist,omega,theta,phi) c6d = torch.zeros([batch,nres,nres,4],dtype=xyz.dtype,device=xyz.device) dist = get_pair_dist(Cb,Cb) dist[torch.isnan(dist)] = 999.9 c6d[...,0] = dist + 999.9*torch.eye(nres,device=xyz.device)[None,...] b,i,j = torch.where(c6d[...,0]=params['DMAX']] = 999.9 mask = torch.zeros((batch, nres,nres), dtype=xyz.dtype, device=xyz.device) mask[b,i,j] = 1.0 return c6d, mask def xyz_to_t2d(xyz_t, params=PARAMS): """convert template cartesian coordinates into 2d distance and orientation maps Parameters ---------- xyz_t : pytorch tensor of shape [batch,templ,nres,3,3] stores Cartesian coordinates of template backbone N,Ca,C atoms Returns ------- t2d : pytorch tensor of shape [batch,nres,nres,37+6+3] stores stacked dist,omega,theta,phi 2D maps """ B, T, L = xyz_t.shape[:3] c6d, mask = xyz_to_c6d(xyz_t[:,:,:,:3].view(B*T,L,3,3), params=params) c6d = c6d.view(B, T, L, L, 4) mask = mask.view(B, T, L, L, 1) # # dist to one-hot encoded dist = dist_to_onehot(c6d[...,0], params) orien = torch.cat((torch.sin(c6d[...,1:]), torch.cos(c6d[...,1:])), dim=-1)*mask # (B, T, L, L, 6) # mask = ~torch.isnan(c6d[:,:,:,:,0]) # (B, T, L, L) t2d = torch.cat((dist, orien, mask.unsqueeze(-1)), dim=-1) t2d[torch.isnan(t2d)] = 0.0 return t2d def xyz_to_chi1(xyz_t): '''convert template cartesian coordinates into chi1 angles Parameters ---------- xyz_t: pytorch tensor of shape [batch, templ, nres, 14, 3] stores Cartesian coordinates of template atoms. For missing atoms, it should be NaN Returns ------- chi1 : pytorch tensor of shape [batch, templ, nres, 2] stores cos and sin chi1 angle ''' B, T, L = xyz_t.shape[:3] xyz_t = xyz_t.reshape(B*T, L, 14, 3) # chi1 angle: N, CA, CB, CG chi1 = get_dih(xyz_t[:,:,0], xyz_t[:,:,1], xyz_t[:,:,4], xyz_t[:,:,5]) # (B*T, L) cos_chi1 = torch.cos(chi1) sin_chi1 = torch.sin(chi1) mask_chi1 = ~torch.isnan(chi1) chi1 = torch.stack((cos_chi1, sin_chi1, mask_chi1), dim=-1) # (B*T, L, 3) chi1[torch.isnan(chi1)] = 0.0 chi1 = chi1.reshape(B, T, L, 3) return chi1 def xyz_to_bbtor(xyz, params=PARAMS): batch = xyz.shape[0] nres = xyz.shape[1] # three anchor atoms N = xyz[:,:,0] Ca = xyz[:,:,1] C = xyz[:,:,2] # recreate Cb given N,Ca,C next_N = torch.roll(N, -1, dims=1) prev_C = torch.roll(C, 1, dims=1) phi = get_dih(prev_C, N, Ca, C) psi = get_dih(N, Ca, C, next_N) # phi[:,0] = 0.0 psi[:,-1] = 0.0 # astep = 2.0*np.pi / params['ABINS'] phi_bin = torch.round((phi+np.pi-astep/2)/astep) psi_bin = torch.round((psi+np.pi-astep/2)/astep) return torch.stack([phi_bin, psi_bin], axis=-1).long() # ============================================================ def dist_to_onehot(dist, params=PARAMS): dist[torch.isnan(dist)] = 999.9 dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=dist.dtype,device=dist.device) db = torch.bucketize(dist.contiguous(),dbins).long() dist = torch.nn.functional.one_hot(db, num_classes=params['DBINS']+1).float() return dist def c6d_to_bins(c6d,params=PARAMS): """bin 2d distance and orientation maps """ dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] astep = 2.0*np.pi / params['ABINS'] dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=c6d.dtype,device=c6d.device) ab360 = torch.linspace(-np.pi+astep, np.pi, params['ABINS'],dtype=c6d.dtype,device=c6d.device) ab180 = torch.linspace(astep, np.pi, params['ABINS']//2,dtype=c6d.dtype,device=c6d.device) db = torch.bucketize(c6d[...,0].contiguous(),dbins) ob = torch.bucketize(c6d[...,1].contiguous(),ab360) tb = torch.bucketize(c6d[...,2].contiguous(),ab360) pb = torch.bucketize(c6d[...,3].contiguous(),ab180) ob[db==params['DBINS']] = params['ABINS'] tb[db==params['DBINS']] = params['ABINS'] pb[db==params['DBINS']] = params['ABINS']//2 return torch.stack([db,ob,tb,pb],axis=-1).to(torch.uint8) # ============================================================ def dist_to_bins(dist,params=PARAMS): """bin 2d distance maps """ dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] db = torch.round((dist-params['DMIN']-dstep/2)/dstep) db[db<0] = 0 db[db>params['DBINS']] = params['DBINS'] return db.long() # ============================================================ def c6d_to_bins2(c6d, same_chain, negative=False, params=PARAMS): """bin 2d distance and orientation maps """ dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] astep = 2.0*np.pi / params['ABINS'] db = torch.round((c6d[...,0]-params['DMIN']-dstep/2)/dstep) ob = torch.round((c6d[...,1]+np.pi-astep/2)/astep) tb = torch.round((c6d[...,2]+np.pi-astep/2)/astep) pb = torch.round((c6d[...,3]-astep/2)/astep) # put all dparams['DBINS']] = params['DBINS'] ob[db==params['DBINS']] = params['ABINS'] tb[db==params['DBINS']] = params['ABINS'] pb[db==params['DBINS']] = params['ABINS']//2 if negative: db = torch.where(same_chain.bool(), db.long(), params['DBINS']) ob = torch.where(same_chain.bool(), ob.long(), params['ABINS']) tb = torch.where(same_chain.bool(), tb.long(), params['ABINS']) pb = torch.where(same_chain.bool(), pb.long(), params['ABINS']//2) return torch.stack([db,ob,tb,pb],axis=-1).long() def get_init_xyz(xyz_t): # input: xyz_t (B, T, L, 14, 3) # ouput: xyz (B, T, L, 14, 3) B, T, L = xyz_t.shape[:3] init = INIT_CRDS.to(xyz_t.device).reshape(1,1,1,27,3).repeat(B,T,L,1,1) if torch.isnan(xyz_t).all(): return init mask = torch.isnan(xyz_t[:,:,:,:3]).any(dim=-1).any(dim=-1) # (B, T, L) # center_CA = ((~mask[:,:,:,None]) * torch.nan_to_num(xyz_t[:,:,:,1,:])).sum(dim=2) / ((~mask[:,:,:,None]).sum(dim=2)+1e-4) # (B, T, 3) xyz_t = xyz_t - center_CA.view(B,T,1,1,3) # idx_s = list() for i_b in range(B): for i_T in range(T): if mask[i_b, i_T].all(): continue exist_in_templ = torch.where(~mask[i_b, i_T])[0] # (L_sub) seqmap = (torch.arange(L, device=xyz_t.device)[:,None] - exist_in_templ[None,:]).abs() # (L, L_sub) seqmap = torch.argmin(seqmap, dim=-1) # (L) idx = torch.gather(exist_in_templ, -1, seqmap) # (L) offset_CA = torch.gather(xyz_t[i_b, i_T, :, 1, :], 0, idx.reshape(L,1).expand(-1,3)) init[i_b,i_T] += offset_CA.reshape(L,1,3) # xyz = torch.where(mask.view(B, T, L, 1, 1), init, xyz_t) return xyz