Spaces:
Running
on
T4
Running
on
T4
import torch | |
import torch.nn as nn | |
class DistanceNetwork(nn.Module): | |
def __init__(self, n_feat, p_drop=0.1): | |
super(DistanceNetwork, self).__init__() | |
# | |
self.proj_symm = nn.Linear(n_feat, 37*2) | |
self.proj_asymm = nn.Linear(n_feat, 37+19) | |
self.reset_parameter() | |
def reset_parameter(self): | |
# initialize linear layer for final logit prediction | |
nn.init.zeros_(self.proj_symm.weight) | |
nn.init.zeros_(self.proj_asymm.weight) | |
nn.init.zeros_(self.proj_symm.bias) | |
nn.init.zeros_(self.proj_asymm.bias) | |
def forward(self, x): | |
# input: pair info (B, L, L, C) | |
# predict theta, phi (non-symmetric) | |
logits_asymm = self.proj_asymm(x) | |
logits_theta = logits_asymm[:,:,:,:37].permute(0,3,1,2) | |
logits_phi = logits_asymm[:,:,:,37:].permute(0,3,1,2) | |
# predict dist, omega | |
logits_symm = self.proj_symm(x) | |
logits_symm = logits_symm + logits_symm.permute(0,2,1,3) | |
logits_dist = logits_symm[:,:,:,:37].permute(0,3,1,2) | |
logits_omega = logits_symm[:,:,:,37:].permute(0,3,1,2) | |
return logits_dist, logits_omega, logits_theta, logits_phi | |
class MaskedTokenNetwork(nn.Module): | |
def __init__(self, n_feat, p_drop=0.1): | |
super(MaskedTokenNetwork, self).__init__() | |
self.proj = nn.Linear(n_feat, 21) | |
self.reset_parameter() | |
def reset_parameter(self): | |
nn.init.zeros_(self.proj.weight) | |
nn.init.zeros_(self.proj.bias) | |
def forward(self, x): | |
B, N, L = x.shape[:3] | |
logits = self.proj(x).permute(0,3,1,2).reshape(B, -1, N*L) | |
return logits | |
class LDDTNetwork(nn.Module): | |
def __init__(self, n_feat, n_bin_lddt=50): | |
super(LDDTNetwork, self).__init__() | |
self.proj = nn.Linear(n_feat, n_bin_lddt) | |
self.reset_parameter() | |
def reset_parameter(self): | |
nn.init.zeros_(self.proj.weight) | |
nn.init.zeros_(self.proj.bias) | |
def forward(self, x): | |
logits = self.proj(x) # (B, L, 50) | |
return logits.permute(0,2,1) | |
class ExpResolvedNetwork(nn.Module): | |
def __init__(self, d_msa, d_state, p_drop=0.1): | |
super(ExpResolvedNetwork, self).__init__() | |
self.norm_msa = nn.LayerNorm(d_msa) | |
self.norm_state = nn.LayerNorm(d_state) | |
self.proj = nn.Linear(d_msa+d_state, 1) | |
self.reset_parameter() | |
def reset_parameter(self): | |
nn.init.zeros_(self.proj.weight) | |
nn.init.zeros_(self.proj.bias) | |
def forward(self, seq, state): | |
B, L = seq.shape[:2] | |
seq = self.norm_msa(seq) | |
state = self.norm_state(state) | |
feat = torch.cat((seq, state), dim=-1) | |
logits = self.proj(feat) | |
return logits.reshape(B, L) | |