File size: 5,859 Bytes
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
from Embeddings import MSA_emb, Extra_emb, Templ_emb, Recycling
from Track_module import IterativeSimulator
from AuxiliaryPredictor import DistanceNetwork, MaskedTokenNetwork, ExpResolvedNetwork, LDDTNetwork
from util import INIT_CRDS
from opt_einsum import contract as einsum
from icecream import ic

class RoseTTAFoldModule(nn.Module):
    def __init__(self, n_extra_block=4, n_main_block=8, n_ref_block=4,\
                 d_msa=256, d_msa_full=64, d_pair=128, d_templ=64,
                 n_head_msa=8, n_head_pair=4, n_head_templ=4,
                 d_hidden=32, d_hidden_templ=64,
                 p_drop=0.15, d_t1d=24, d_t2d=44,
                 SE3_param_full={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32},
                 SE3_param_topk={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32},
                 ):
        super(RoseTTAFoldModule, self).__init__()
        #
        # Input Embeddings
        d_state = SE3_param_topk['l0_out_features']
        self.latent_emb = MSA_emb(d_msa=d_msa, d_pair=d_pair, d_state=d_state, p_drop=p_drop)
        self.full_emb = Extra_emb(d_msa=d_msa_full, d_init=25, p_drop=p_drop)
        self.templ_emb = Templ_emb(d_pair=d_pair, d_templ=d_templ, d_state=d_state,
                                   n_head=n_head_templ,
                                   d_hidden=d_hidden_templ, p_drop=0.25, d_t1d=d_t1d, d_t2d=d_t2d)
        # Update inputs with outputs from previous round
        self.recycle = Recycling(d_msa=d_msa, d_pair=d_pair, d_state=d_state)
        #
        self.simulator = IterativeSimulator(n_extra_block=n_extra_block,
                                            n_main_block=n_main_block,
                                            n_ref_block=n_ref_block,
                                            d_msa=d_msa, d_msa_full=d_msa_full,
                                            d_pair=d_pair, d_hidden=d_hidden,
                                            n_head_msa=n_head_msa,
                                            n_head_pair=n_head_pair,
                                            SE3_param_full=SE3_param_full,
                                            SE3_param_topk=SE3_param_topk,
                                            p_drop=p_drop)
        ##
        self.c6d_pred = DistanceNetwork(d_pair, p_drop=p_drop)
        self.aa_pred = MaskedTokenNetwork(d_msa, p_drop=p_drop)
        self.lddt_pred = LDDTNetwork(d_state)
       
        self.exp_pred = ExpResolvedNetwork(d_msa, d_state)

    def forward(self, msa_latent, msa_full, seq, xyz, idx,
                seq1hot=None, t1d=None, t2d=None, xyz_t=None, alpha_t=None,
                msa_prev=None, pair_prev=None, state_prev=None,
                return_raw=False, return_full=False,
                use_checkpoint=False, return_infer=False):
        B, N, L = msa_latent.shape[:3]
        # Get embeddings
        #ic(seq.shape)
        #ic(msa_latent.shape)
        #ic(seq1hot.shape)
        #ic(idx.shape)
        #ic(xyz.shape)
        #ic(seq1hot.shape)
        #ic(t1d.shape)
        #ic(t2d.shape)

        idx = idx.long()
        msa_latent, pair, state = self.latent_emb(msa_latent, seq, idx, seq1hot=seq1hot)
        
        msa_full = self.full_emb(msa_full, seq, idx, seq1hot=seq1hot)
        #
        # Do recycling
        if msa_prev == None:
            msa_prev = torch.zeros_like(msa_latent[:,0])
        if pair_prev == None:
            pair_prev = torch.zeros_like(pair)
        if state_prev == None:
            state_prev = torch.zeros_like(state)

        #ic(seq.shape)
        #ic(msa_prev.shape)
        #ic(pair_prev.shape)
        #ic(xyz.shape)
        #ic(state_prev.shape)
        

        msa_recycle, pair_recycle, state_recycle = self.recycle(seq, msa_prev, pair_prev, xyz, state_prev)
        msa_latent[:,0] = msa_latent[:,0] + msa_recycle.reshape(B,L,-1)
        pair = pair + pair_recycle
        state = state + state_recycle
        #
        #ic(t1d.dtype)
        #ic(t2d.dtype)
        #ic(alpha_t.dtype)
        #ic(xyz_t.dtype)
        #ic(pair.dtype)
        #ic(state.dtype)


        #import pdb; pdb.set_trace()
        
        # add template embedding
        pair, state = self.templ_emb(t1d, t2d, alpha_t, xyz_t, pair, state, use_checkpoint=use_checkpoint)
        
        #ic(seq.dtype)
        #ic(msa_latent.dtype)
        #ic(msa_full.dtype)
        #ic(pair.dtype)
        #ic(xyz.dtype)
        #ic(state.dtype)
        #ic(idx.dtype)

        # Predict coordinates from given inputs
        msa, pair, R, T, alpha_s, state = self.simulator(seq, msa_latent, msa_full.type(torch.float32), pair, xyz[:,:,:3],
                                                         state, idx, use_checkpoint=use_checkpoint)
        
        if return_raw:
            # get last structure
            xyz = einsum('bnij,bnaj->bnai', R[-1], xyz[:,:,:3]-xyz[:,:,1].unsqueeze(-2)) + T[-1].unsqueeze(-2)
            return msa[:,0], pair, xyz, state, alpha_s[-1]

        # predict masked amino acids
        logits_aa = self.aa_pred(msa)
        #
        # predict distogram & orientograms
        logits = self.c6d_pred(pair)
        
        # Predict LDDT
        lddt = self.lddt_pred(state)

        # predict experimentally resolved or not
        logits_exp = self.exp_pred(msa[:,0], state)
        
        if return_infer:
            #get last structure
            xyz = einsum('bnij,bnaj->bnai', R[-1], xyz[:,:,:3]-xyz[:,:,1].unsqueeze(-2)) + T[-1].unsqueeze(-2)
            return logits, logits_aa, logits_exp, xyz, lddt, msa[:,0], pair, state, alpha_s[-1]


        # get all intermediate bb structures
        xyz = einsum('rbnij,bnaj->rbnai', R, xyz[:,:,:3]-xyz[:,:,1].unsqueeze(-2)) + T.unsqueeze(-2)

        return logits, logits_aa, logits_exp, xyz, alpha_s, lddt