import transformers import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import spaces checkpoint = "." tokenizer = AutoTokenizer.from_pretrained(checkpoint) @st.cache_resource def load_model(model_name): model = AutoModelForCausalLM.from_pretrained(model_name) return model model = load_model(checkpoint) @spaces.GPU def infer(input_ids, bad_words_ids, max_tokens, temperature, top_k, top_p): output_sequences = model.generate( input_ids=input_ids, bad_words_ids = bad_words_ids, max_new_tokens=max_tokens, temperature=temperature, top_k=top_k, top_p=top_p, do_sample=True, no_repeat_ngram_size=2, early_stopping=True, num_beams=4, pad_token_id=tokenizer.eos_token_id, num_return_sequences=1 ) return output_sequences default_value = "We are building the first ever" #prompts st.title("Write with vcGPT 🦄") st.write("This is a LLM that was fine-tuned on a dataset of investment memos to help you generate your next pitch.") sent = st.text_area("Text", default_value) max_tokens = st.sidebar.slider("Max Tokens", min_value = 16, max_value=64) temperature = st.sidebar.slider("Temperature", value = 0.8, min_value = 0.05, max_value=1.0, step=0.05) top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 4) top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9) # print(model.config.max_position_embeddings) encoded_prompt = tokenizer.encode(tokenizer.eos_token+sent, max_length=1024, return_tensors="pt", truncation=True) # get tokens of words that should not be generated bad_words_ids = tokenizer(["confidential", "angel.co", "angellist.com", "angellist"], add_special_tokens=False).input_ids if encoded_prompt.size()[-1] == 0: input_ids = None else: input_ids = encoded_prompt output_sequences = infer(input_ids, bad_words_ids, max_tokens, temperature, top_k, top_p) for generated_sequence_idx, generated_sequence in enumerate(output_sequences): print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===") generated_sequences = generated_sequence.tolist() # Decode text text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True) # Remove all text after the stop token #text = text[: text.find(args.stop_token) if args.stop_token else None] # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing total_sequence = ( sent + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True, skip_special_tokens=True)) :] ) generated_sequences.append(total_sequence) print(total_sequence) st.markdown(generated_sequences[-1])