Spaces:
Running
Running
import transformers | |
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import spaces | |
checkpoint = "." | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
def load_model(model_name): | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
return model | |
model = load_model(checkpoint) | |
def infer(input_ids, bad_words_ids, max_tokens, temperature, top_k, top_p): | |
output_sequences = model.generate( | |
input_ids=input_ids, | |
bad_words_ids = bad_words_ids, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
do_sample=True, | |
no_repeat_ngram_size=2, | |
early_stopping=True, | |
num_beams=4, | |
pad_token_id=tokenizer.eos_token_id, | |
num_return_sequences=1 | |
) | |
return output_sequences | |
default_value = "We are building the first ever" | |
#prompts | |
st.title("Write with vcGPT 🦄") | |
st.write("This is a LLM that was fine-tuned on a dataset of investment memos to help you generate your next pitch.") | |
sent = st.text_area("Text", default_value) | |
max_tokens = st.sidebar.slider("Max Tokens", min_value = 16, max_value=64) | |
temperature = st.sidebar.slider("Temperature", value = 0.8, min_value = 0.05, max_value=1.0, step=0.05) | |
top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 4) | |
top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9) | |
# print(model.config.max_position_embeddings) | |
encoded_prompt = tokenizer.encode(tokenizer.eos_token+sent, max_length=1024, return_tensors="pt", truncation=True) | |
# get tokens of words that should not be generated | |
bad_words_ids = tokenizer(["confidential", "angel.co", "angellist.com", "angellist"], add_special_tokens=False).input_ids | |
if encoded_prompt.size()[-1] == 0: | |
input_ids = None | |
else: | |
input_ids = encoded_prompt | |
output_sequences = infer(input_ids, bad_words_ids, max_tokens, temperature, top_k, top_p) | |
for generated_sequence_idx, generated_sequence in enumerate(output_sequences): | |
print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===") | |
generated_sequences = generated_sequence.tolist() | |
# Decode text | |
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True) | |
# Remove all text after the stop token | |
#text = text[: text.find(args.stop_token) if args.stop_token else None] | |
# Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing | |
total_sequence = ( | |
sent + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True, skip_special_tokens=True)) :] | |
) | |
generated_sequences.append(total_sequence) | |
print(total_sequence) | |
st.markdown(generated_sequences[-1]) |