megaaziib commited on
Commit
58243a7
1 Parent(s): 8e05917

add app.py

Browse files
Files changed (1) hide show
  1. app.py +499 -0
app.py ADDED
@@ -0,0 +1,499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import json
4
+ import traceback
5
+ import logging
6
+ import gradio as gr
7
+ import numpy as np
8
+ import librosa
9
+ import torch
10
+ import asyncio
11
+ import edge_tts
12
+ import yt_dlp
13
+ import ffmpeg
14
+ import subprocess
15
+ import sys
16
+ import io
17
+ import wave
18
+ from datetime import datetime
19
+ from fairseq import checkpoint_utils
20
+ from lib.infer_pack.models import (
21
+ SynthesizerTrnMs256NSFsid,
22
+ SynthesizerTrnMs256NSFsid_nono,
23
+ SynthesizerTrnMs768NSFsid,
24
+ SynthesizerTrnMs768NSFsid_nono,
25
+ )
26
+ from vc_infer_pipeline import VC
27
+ from config import Config
28
+ config = Config()
29
+ logging.getLogger("numba").setLevel(logging.WARNING)
30
+ limitation = os.getenv("SYSTEM") == "spaces"
31
+
32
+ audio_mode = []
33
+ f0method_mode = []
34
+ f0method_info = ""
35
+ if limitation is True:
36
+ audio_mode = ["Upload audio", "TTS Audio"]
37
+ f0method_mode = ["pm", "crepe", "harvest"]
38
+ f0method_info = "PM is fast, Crepe is good but it was extremely slow (Default: PM)"
39
+ else:
40
+ audio_mode = ["Upload audio", "Youtube", "TTS Audio"]
41
+ f0method_mode = ["pm", "harvest", "crepe"]
42
+ f0method_info = "PM is fast, Harvest is good at lower frequency but extremely slow, Crepe is good for higher notes. (Default: PM)"
43
+ def create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, file_index):
44
+ def vc_fn(
45
+ vc_audio_mode,
46
+ vc_input,
47
+ vc_upload,
48
+ tts_text,
49
+ tts_voice,
50
+ f0_up_key,
51
+ f0_method,
52
+ index_rate,
53
+ filter_radius,
54
+ resample_sr,
55
+ rms_mix_rate,
56
+ protect,
57
+ ):
58
+ try:
59
+ if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
60
+ audio, sr = librosa.load(vc_input, sr=16000, mono=True)
61
+ elif vc_audio_mode == "Upload audio":
62
+ if vc_upload is None:
63
+ return "You need to upload an audio", None
64
+ sampling_rate, audio = vc_upload
65
+ duration = audio.shape[0] / sampling_rate
66
+ if duration > 330 and limitation:
67
+ return "Please upload an audio file that is less than 1 minute.", None
68
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
69
+ if len(audio.shape) > 1:
70
+ audio = librosa.to_mono(audio.transpose(1, 0))
71
+ if sampling_rate != 16000:
72
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
73
+ elif vc_audio_mode == "TTS Audio":
74
+ if len(tts_text) > 600 and limitation:
75
+ return "Text is too long", None
76
+ if tts_text is None or tts_voice is None:
77
+ return "You need to enter text and select a voice", None
78
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
79
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
80
+ vc_input = "tts.mp3"
81
+ times = [0, 0, 0]
82
+ f0_up_key = int(f0_up_key)
83
+ audio_opt = vc.pipeline(
84
+ hubert_model,
85
+ net_g,
86
+ 0,
87
+ audio,
88
+ vc_input,
89
+ times,
90
+ f0_up_key,
91
+ f0_method,
92
+ file_index,
93
+ # file_big_npy,
94
+ index_rate,
95
+ if_f0,
96
+ filter_radius,
97
+ tgt_sr,
98
+ resample_sr,
99
+ rms_mix_rate,
100
+ version,
101
+ protect,
102
+ f0_file=None,
103
+ )
104
+ info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
105
+ print(f"{model_title} | {info}")
106
+ return info, (tgt_sr, audio_opt)
107
+ except:
108
+ info = traceback.format_exc()
109
+ print(info)
110
+ return info, (None, None)
111
+ return vc_fn
112
+
113
+ def load_model():
114
+ categories = []
115
+ with open("weights/folder_info.json", "r", encoding="utf-8") as f:
116
+ folder_info = json.load(f)
117
+ for category_name, category_info in folder_info.items():
118
+ if not category_info['enable']:
119
+ continue
120
+ category_title = category_info['title']
121
+ category_folder = category_info['folder_path']
122
+ models = []
123
+ with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
124
+ models_info = json.load(f)
125
+ for character_name, info in models_info.items():
126
+ if not info['enable']:
127
+ continue
128
+ model_title = info['title']
129
+ model_name = info['model_path']
130
+ model_author = info.get("author", None)
131
+ model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
132
+ model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
133
+ cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
134
+ tgt_sr = cpt["config"][-1]
135
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
136
+ if_f0 = cpt.get("f0", 1)
137
+ version = cpt.get("version", "v1")
138
+ if version == "v1":
139
+ if if_f0 == 1:
140
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
141
+ else:
142
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
143
+ model_version = "V1"
144
+ elif version == "v2":
145
+ if if_f0 == 1:
146
+ net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
147
+ else:
148
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
149
+ model_version = "V2"
150
+ del net_g.enc_q
151
+ print(net_g.load_state_dict(cpt["weight"], strict=False))
152
+ net_g.eval().to(config.device)
153
+ if config.is_half:
154
+ net_g = net_g.half()
155
+ else:
156
+ net_g = net_g.float()
157
+ vc = VC(tgt_sr, config)
158
+ print(f"Model loaded: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
159
+ models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, model_index)))
160
+ categories.append([category_title, category_folder, models])
161
+ return categories
162
+
163
+ def cut_vocal_and_inst(url, audio_provider, split_model):
164
+ if url != "":
165
+ if not os.path.exists("dl_audio"):
166
+ os.mkdir("dl_audio")
167
+ if audio_provider == "Youtube":
168
+ ydl_opts = {
169
+ 'format': 'bestaudio/best',
170
+ 'postprocessors': [{
171
+ 'key': 'FFmpegExtractAudio',
172
+ 'preferredcodec': 'wav',
173
+ }],
174
+ "outtmpl": 'dl_audio/youtube_audio',
175
+ }
176
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
177
+ ydl.download([url])
178
+ audio_path = "dl_audio/youtube_audio.wav"
179
+ else:
180
+ # Spotify doesnt work.
181
+ # Need to find other solution soon.
182
+ '''
183
+ command = f"spotdl download {url} --output dl_audio/.wav"
184
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
185
+ print(result.stdout.decode())
186
+ audio_path = "dl_audio/spotify_audio.wav"
187
+ '''
188
+ if split_model == "htdemucs":
189
+ command = f"demucs --two-stems=vocals {audio_path} -o output"
190
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
191
+ print(result.stdout.decode())
192
+ return "output/htdemucs/youtube_audio/vocals.wav", "output/htdemucs/youtube_audio/no_vocals.wav", audio_path, "output/htdemucs/youtube_audio/vocals.wav"
193
+ else:
194
+ command = f"demucs --two-stems=vocals -n mdx_extra_q {audio_path} -o output"
195
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
196
+ print(result.stdout.decode())
197
+ return "output/mdx_extra_q/youtube_audio/vocals.wav", "output/mdx_extra_q/youtube_audio/no_vocals.wav", audio_path, "output/mdx_extra_q/youtube_audio/vocals.wav"
198
+ else:
199
+ raise gr.Error("URL Required!")
200
+ return None, None, None, None
201
+
202
+ def combine_vocal_and_inst(audio_data, audio_volume, split_model):
203
+ if not os.path.exists("output/result"):
204
+ os.mkdir("output/result")
205
+ vocal_path = "output/result/output.wav"
206
+ output_path = "output/result/combine.mp3"
207
+ if split_model == "htdemucs":
208
+ inst_path = "output/htdemucs/youtube_audio/no_vocals.wav"
209
+ else:
210
+ inst_path = "output/mdx_extra_q/youtube_audio/no_vocals.wav"
211
+ with wave.open(vocal_path, "w") as wave_file:
212
+ wave_file.setnchannels(1)
213
+ wave_file.setsampwidth(2)
214
+ wave_file.setframerate(audio_data[0])
215
+ wave_file.writeframes(audio_data[1].tobytes())
216
+ command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
217
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
218
+ print(result.stdout.decode())
219
+ return output_path
220
+
221
+ def load_hubert():
222
+ global hubert_model
223
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
224
+ ["hubert_base.pt"],
225
+ suffix="",
226
+ )
227
+ hubert_model = models[0]
228
+ hubert_model = hubert_model.to(config.device)
229
+ if config.is_half:
230
+ hubert_model = hubert_model.half()
231
+ else:
232
+ hubert_model = hubert_model.float()
233
+ hubert_model.eval()
234
+
235
+ def change_audio_mode(vc_audio_mode):
236
+ if vc_audio_mode == "Input path":
237
+ return (
238
+ # Input & Upload
239
+ gr.Textbox.update(visible=True),
240
+ gr.Audio.update(visible=False),
241
+ # Youtube
242
+ gr.Dropdown.update(visible=False),
243
+ gr.Textbox.update(visible=False),
244
+ gr.Dropdown.update(visible=False),
245
+ gr.Button.update(visible=False),
246
+ gr.Audio.update(visible=False),
247
+ gr.Audio.update(visible=False),
248
+ gr.Audio.update(visible=False),
249
+ gr.Slider.update(visible=False),
250
+ gr.Audio.update(visible=False),
251
+ gr.Button.update(visible=False),
252
+ # TTS
253
+ gr.Textbox.update(visible=False),
254
+ gr.Dropdown.update(visible=False)
255
+ )
256
+ elif vc_audio_mode == "Upload audio":
257
+ return (
258
+ # Input & Upload
259
+ gr.Textbox.update(visible=False),
260
+ gr.Audio.update(visible=True),
261
+ # Youtube
262
+ gr.Dropdown.update(visible=False),
263
+ gr.Textbox.update(visible=False),
264
+ gr.Dropdown.update(visible=False),
265
+ gr.Button.update(visible=False),
266
+ gr.Audio.update(visible=False),
267
+ gr.Audio.update(visible=False),
268
+ gr.Audio.update(visible=False),
269
+ gr.Slider.update(visible=False),
270
+ gr.Audio.update(visible=False),
271
+ gr.Button.update(visible=False),
272
+ # TTS
273
+ gr.Textbox.update(visible=False),
274
+ gr.Dropdown.update(visible=False)
275
+ )
276
+ elif vc_audio_mode == "Youtube":
277
+ return (
278
+ # Input & Upload
279
+ gr.Textbox.update(visible=False),
280
+ gr.Audio.update(visible=False),
281
+ # Youtube
282
+ gr.Dropdown.update(visible=True),
283
+ gr.Textbox.update(visible=True),
284
+ gr.Dropdown.update(visible=True),
285
+ gr.Button.update(visible=True),
286
+ gr.Audio.update(visible=True),
287
+ gr.Audio.update(visible=True),
288
+ gr.Audio.update(visible=True),
289
+ gr.Slider.update(visible=True),
290
+ gr.Audio.update(visible=True),
291
+ gr.Button.update(visible=True),
292
+ # TTS
293
+ gr.Textbox.update(visible=False),
294
+ gr.Dropdown.update(visible=False)
295
+ )
296
+ elif vc_audio_mode == "TTS Audio":
297
+ return (
298
+ # Input & Upload
299
+ gr.Textbox.update(visible=False),
300
+ gr.Audio.update(visible=False),
301
+ # Youtube
302
+ gr.Dropdown.update(visible=False),
303
+ gr.Textbox.update(visible=False),
304
+ gr.Dropdown.update(visible=False),
305
+ gr.Button.update(visible=False),
306
+ gr.Audio.update(visible=False),
307
+ gr.Audio.update(visible=False),
308
+ gr.Audio.update(visible=False),
309
+ gr.Slider.update(visible=False),
310
+ gr.Audio.update(visible=False),
311
+ gr.Button.update(visible=False),
312
+ # TTS
313
+ gr.Textbox.update(visible=True),
314
+ gr.Dropdown.update(visible=True)
315
+ )
316
+ else:
317
+ return (
318
+ # Input & Upload
319
+ gr.Textbox.update(visible=False),
320
+ gr.Audio.update(visible=True),
321
+ # Youtube
322
+ gr.Dropdown.update(visible=False),
323
+ gr.Textbox.update(visible=False),
324
+ gr.Dropdown.update(visible=False),
325
+ gr.Button.update(visible=False),
326
+ gr.Audio.update(visible=False),
327
+ gr.Audio.update(visible=False),
328
+ gr.Audio.update(visible=False),
329
+ gr.Slider.update(visible=False),
330
+ gr.Audio.update(visible=False),
331
+ gr.Button.update(visible=False),
332
+ # TTS
333
+ gr.Textbox.update(visible=False),
334
+ gr.Dropdown.update(visible=False)
335
+ )
336
+
337
+ if __name__ == '__main__':
338
+ load_hubert()
339
+ categories = load_model()
340
+ tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
341
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
342
+ with gr.Blocks(theme=gr.themes.Base()) as app:
343
+ gr.Markdown(
344
+ "# <center> Hololive RVC Models\n"
345
+ "### <center> will update every hololive ai model that i can find or make.\n"
346
+ "[![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/megaaziib)\n\n"
347
+ )
348
+ for (folder_title, folder, models) in categories:
349
+ with gr.TabItem(folder_title):
350
+ with gr.Tabs():
351
+ if not models:
352
+ gr.Markdown("# <center> No Model Loaded.")
353
+ gr.Markdown("## <center> Please add model or fix your model path.")
354
+ continue
355
+ for (name, title, author, cover, model_version, vc_fn) in models:
356
+ with gr.TabItem(name):
357
+ with gr.Row():
358
+ gr.Markdown(
359
+ '<div align="center">'
360
+ f'<div>{title}</div>\n'+
361
+ f'<div>RVC {model_version} Model</div>\n'+
362
+ (f'<div>Model author: {author}</div>' if author else "")+
363
+ (f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
364
+ '</div>'
365
+ )
366
+ with gr.Row():
367
+ with gr.Column():
368
+ vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Upload audio")
369
+ # Input and Upload
370
+ vc_input = gr.Textbox(label="Input audio path", visible=False)
371
+ vc_upload = gr.Audio(label="Upload audio file", visible=True, interactive=True)
372
+ # Youtube
373
+ vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
374
+ vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
375
+ vc_split_model = gr.Dropdown(label="Splitter Model", choices=["htdemucs", "mdx_extra_q"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
376
+ vc_split = gr.Button("Split Audio", variant="primary", visible=False)
377
+ vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
378
+ vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
379
+ vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
380
+ # TTS
381
+ tts_text = gr.Textbox(visible=False, label="TTS text", info="Text to speech input")
382
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
383
+ with gr.Column():
384
+ vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
385
+ f0method0 = gr.Radio(
386
+ label="Pitch extraction algorithm",
387
+ info=f0method_info,
388
+ choices=f0method_mode,
389
+ value="pm",
390
+ interactive=True
391
+ )
392
+ index_rate1 = gr.Slider(
393
+ minimum=0,
394
+ maximum=1,
395
+ label="Retrieval feature ratio",
396
+ info="Accents controling. Too high prob gonna sounds too robotic (Default: 0.4)",
397
+ value=0.4,
398
+ interactive=True,
399
+ )
400
+ filter_radius0 = gr.Slider(
401
+ minimum=0,
402
+ maximum=7,
403
+ label="Apply Median Filtering",
404
+ info="The value represents the filter radius and can reduce breathiness.",
405
+ value=1,
406
+ step=1,
407
+ interactive=True,
408
+ )
409
+ resample_sr0 = gr.Slider(
410
+ minimum=0,
411
+ maximum=48000,
412
+ label="Resample the output audio",
413
+ info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
414
+ value=0,
415
+ step=1,
416
+ interactive=True,
417
+ )
418
+ rms_mix_rate0 = gr.Slider(
419
+ minimum=0,
420
+ maximum=1,
421
+ label="Volume Envelope",
422
+ info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
423
+ value=1,
424
+ interactive=True,
425
+ )
426
+ protect0 = gr.Slider(
427
+ minimum=0,
428
+ maximum=0.5,
429
+ label="Voice Protection",
430
+ info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
431
+ value=0.23,
432
+ step=0.01,
433
+ interactive=True,
434
+ )
435
+ with gr.Column():
436
+ vc_log = gr.Textbox(label="Output Information", interactive=False)
437
+ vc_output = gr.Audio(label="Output Audio", interactive=False)
438
+ vc_convert = gr.Button("Convert", variant="primary")
439
+ vc_volume = gr.Slider(
440
+ minimum=0,
441
+ maximum=10,
442
+ label="Vocal volume",
443
+ value=4,
444
+ interactive=True,
445
+ step=1,
446
+ info="Adjust vocal volume (Default: 4}",
447
+ visible=False
448
+ )
449
+ vc_combined_output = gr.Audio(label="Output Combined Audio", visible=False)
450
+ vc_combine = gr.Button("Combine",variant="primary", visible=False)
451
+ vc_convert.click(
452
+ fn=vc_fn,
453
+ inputs=[
454
+ vc_audio_mode,
455
+ vc_input,
456
+ vc_upload,
457
+ tts_text,
458
+ tts_voice,
459
+ vc_transform0,
460
+ f0method0,
461
+ index_rate1,
462
+ filter_radius0,
463
+ resample_sr0,
464
+ rms_mix_rate0,
465
+ protect0,
466
+ ],
467
+ outputs=[vc_log ,vc_output]
468
+ )
469
+ vc_split.click(
470
+ fn=cut_vocal_and_inst,
471
+ inputs=[vc_link, vc_download_audio, vc_split_model],
472
+ outputs=[vc_vocal_preview, vc_inst_preview, vc_audio_preview, vc_input]
473
+ )
474
+ vc_combine.click(
475
+ fn=combine_vocal_and_inst,
476
+ inputs=[vc_output, vc_volume, vc_split_model],
477
+ outputs=[vc_combined_output]
478
+ )
479
+ vc_audio_mode.change(
480
+ fn=change_audio_mode,
481
+ inputs=[vc_audio_mode],
482
+ outputs=[
483
+ vc_input,
484
+ vc_upload,
485
+ vc_download_audio,
486
+ vc_link,
487
+ vc_split_model,
488
+ vc_split,
489
+ vc_vocal_preview,
490
+ vc_inst_preview,
491
+ vc_audio_preview,
492
+ vc_volume,
493
+ vc_combined_output,
494
+ vc_combine,
495
+ tts_text,
496
+ tts_voice
497
+ ]
498
+ )
499
+ app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)