|
import onnxruntime |
|
import librosa |
|
import numpy as np |
|
import soundfile |
|
|
|
|
|
class ContentVec: |
|
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None): |
|
print("load model(s) from {}".format(vec_path)) |
|
if device == "cpu" or device is None: |
|
providers = ["CPUExecutionProvider"] |
|
elif device == "cuda": |
|
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] |
|
elif device == "dml": |
|
providers = ["DmlExecutionProvider"] |
|
else: |
|
raise RuntimeError("Unsportted Device") |
|
self.model = onnxruntime.InferenceSession(vec_path, providers=providers) |
|
|
|
def __call__(self, wav): |
|
return self.forward(wav) |
|
|
|
def forward(self, wav): |
|
feats = wav |
|
if feats.ndim == 2: |
|
feats = feats.mean(-1) |
|
assert feats.ndim == 1, feats.ndim |
|
feats = np.expand_dims(np.expand_dims(feats, 0), 0) |
|
onnx_input = {self.model.get_inputs()[0].name: feats} |
|
logits = self.model.run(None, onnx_input)[0] |
|
return logits.transpose(0, 2, 1) |
|
|
|
|
|
def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs): |
|
if f0_predictor == "pm": |
|
from lib.infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor |
|
|
|
f0_predictor_object = PMF0Predictor( |
|
hop_length=hop_length, sampling_rate=sampling_rate |
|
) |
|
elif f0_predictor == "harvest": |
|
from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor |
|
|
|
f0_predictor_object = HarvestF0Predictor( |
|
hop_length=hop_length, sampling_rate=sampling_rate |
|
) |
|
elif f0_predictor == "dio": |
|
from lib.infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor |
|
|
|
f0_predictor_object = DioF0Predictor( |
|
hop_length=hop_length, sampling_rate=sampling_rate |
|
) |
|
else: |
|
raise Exception("Unknown f0 predictor") |
|
return f0_predictor_object |
|
|
|
|
|
class OnnxRVC: |
|
def __init__( |
|
self, |
|
model_path, |
|
sr=40000, |
|
hop_size=512, |
|
vec_path="vec-768-layer-12", |
|
device="cpu", |
|
): |
|
vec_path = f"pretrained/{vec_path}.onnx" |
|
self.vec_model = ContentVec(vec_path, device) |
|
if device == "cpu" or device is None: |
|
providers = ["CPUExecutionProvider"] |
|
elif device == "cuda": |
|
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] |
|
elif device == "dml": |
|
providers = ["DmlExecutionProvider"] |
|
else: |
|
raise RuntimeError("Unsportted Device") |
|
self.model = onnxruntime.InferenceSession(model_path, providers=providers) |
|
self.sampling_rate = sr |
|
self.hop_size = hop_size |
|
|
|
def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd): |
|
onnx_input = { |
|
self.model.get_inputs()[0].name: hubert, |
|
self.model.get_inputs()[1].name: hubert_length, |
|
self.model.get_inputs()[2].name: pitch, |
|
self.model.get_inputs()[3].name: pitchf, |
|
self.model.get_inputs()[4].name: ds, |
|
self.model.get_inputs()[5].name: rnd, |
|
} |
|
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16) |
|
|
|
def inference( |
|
self, |
|
raw_path, |
|
sid, |
|
f0_method="dio", |
|
f0_up_key=0, |
|
pad_time=0.5, |
|
cr_threshold=0.02, |
|
): |
|
f0_min = 50 |
|
f0_max = 1100 |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
f0_predictor = get_f0_predictor( |
|
f0_method, |
|
hop_length=self.hop_size, |
|
sampling_rate=self.sampling_rate, |
|
threshold=cr_threshold, |
|
) |
|
wav, sr = librosa.load(raw_path, sr=self.sampling_rate) |
|
org_length = len(wav) |
|
if org_length / sr > 50.0: |
|
raise RuntimeError("Reached Max Length") |
|
|
|
wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000) |
|
wav16k = wav16k |
|
|
|
hubert = self.vec_model(wav16k) |
|
hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32) |
|
hubert_length = hubert.shape[1] |
|
|
|
pitchf = f0_predictor.compute_f0(wav, hubert_length) |
|
pitchf = pitchf * 2 ** (f0_up_key / 12) |
|
pitch = pitchf.copy() |
|
f0_mel = 1127 * np.log(1 + pitch / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( |
|
f0_mel_max - f0_mel_min |
|
) + 1 |
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > 255] = 255 |
|
pitch = np.rint(f0_mel).astype(np.int64) |
|
|
|
pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32) |
|
pitch = pitch.reshape(1, len(pitch)) |
|
ds = np.array([sid]).astype(np.int64) |
|
|
|
rnd = np.random.randn(1, 192, hubert_length).astype(np.float32) |
|
hubert_length = np.array([hubert_length]).astype(np.int64) |
|
|
|
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze() |
|
out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant") |
|
return out_wav[0:org_length] |
|
|