backend / main_backend_toxicity.py
meg-huggingface
Inferring compute needs and code cleanup
ffe4d51
import pprint
import re
from huggingface_hub import snapshot_download, delete_inference_endpoint
from src.backend.inference_endpoint import create_endpoint
from src.backend.manage_requests import check_completed_evals, \
get_eval_requests, set_eval_request, PENDING_STATUS, FINISHED_STATUS, \
FAILED_STATUS, RUNNING_STATUS
from src.backend.run_toxicity_eval import compute_results
from src.backend.sort_queue import sort_models_by_priority
from src.envs import (REQUESTS_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO,
EVAL_RESULTS_PATH_BACKEND, API, TOKEN)
from src.logging import setup_logger
logger = setup_logger(__name__)
pp = pprint.PrettyPrinter(width=80)
snapshot_download(repo_id=RESULTS_REPO, revision="main",
local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset",
max_workers=60, token=TOKEN)
snapshot_download(repo_id=REQUESTS_REPO, revision="main",
local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset",
max_workers=60, token=TOKEN)
def run_auto_eval():
# pull the eval dataset from the hub and parse any eval requests
# check completed evals and set them to finished
check_completed_evals(
api=API,
completed_status=FINISHED_STATUS,
failed_status=FAILED_STATUS,
hf_repo=REQUESTS_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
hf_repo_results=RESULTS_REPO,
local_dir_results=EVAL_RESULTS_PATH_BACKEND
)
# Get all eval requests that are PENDING
eval_requests = get_eval_requests(hf_repo=REQUESTS_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND)
# Sort the evals by priority (first submitted, first run)
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
logger.info(
f"Found {len(eval_requests)} {PENDING_STATUS} eval requests")
if len(eval_requests) == 0:
return
eval_request = eval_requests[0]
logger.info(pp.pformat(eval_request))
set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=RUNNING_STATUS,
hf_repo=REQUESTS_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
logger.info(
f'Starting Evaluation of {eval_request.json_filepath} on Inference endpoints')
endpoint_name = _make_endpoint_name(eval_request)
endpoint_url = create_endpoint(endpoint_name, eval_request.model)
logger.info("Created an endpoint url at %s" % endpoint_url)
results = compute_results(endpoint_url, eval_request)
logger.info("FINISHED!")
logger.info(results)
logger.info(f'Completed Evaluation of {eval_request.json_filepath}')
set_eval_request(api=API,
eval_request=eval_request,
set_to_status=FINISHED_STATUS,
hf_repo=REQUESTS_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
# Delete endpoint when we're done.
delete_inference_endpoint(endpoint_name)
def _make_endpoint_name(eval_request):
model_repository = eval_request.model
# Naming convention for endpoints
endpoint_name_tmp = re.sub("[/.]", "-",
model_repository.lower()) + "-toxicity-eval"
# Endpoints apparently can't have more than 32 characters.
endpoint_name = endpoint_name_tmp[:32]
return endpoint_name
if __name__ == "__main__":
run_auto_eval()