|
import pprint |
|
import re |
|
|
|
from huggingface_hub import snapshot_download, delete_inference_endpoint |
|
|
|
from src.backend.inference_endpoint import create_endpoint |
|
from src.backend.manage_requests import check_completed_evals, \ |
|
get_eval_requests, set_eval_request, PENDING_STATUS, FINISHED_STATUS, \ |
|
FAILED_STATUS, RUNNING_STATUS |
|
from src.backend.run_toxicity_eval import compute_results |
|
from src.backend.sort_queue import sort_models_by_priority |
|
from src.envs import (REQUESTS_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, |
|
EVAL_RESULTS_PATH_BACKEND, API, TOKEN) |
|
from src.logging import setup_logger |
|
|
|
logger = setup_logger(__name__) |
|
|
|
pp = pprint.PrettyPrinter(width=80) |
|
|
|
|
|
snapshot_download(repo_id=RESULTS_REPO, revision="main", |
|
local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", |
|
max_workers=60, token=TOKEN) |
|
snapshot_download(repo_id=REQUESTS_REPO, revision="main", |
|
local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", |
|
max_workers=60, token=TOKEN) |
|
|
|
|
|
def run_auto_eval(): |
|
|
|
|
|
check_completed_evals( |
|
api=API, |
|
completed_status=FINISHED_STATUS, |
|
failed_status=FAILED_STATUS, |
|
hf_repo=REQUESTS_REPO, |
|
local_dir=EVAL_REQUESTS_PATH_BACKEND, |
|
hf_repo_results=RESULTS_REPO, |
|
local_dir_results=EVAL_RESULTS_PATH_BACKEND |
|
) |
|
|
|
|
|
eval_requests = get_eval_requests(hf_repo=REQUESTS_REPO, |
|
local_dir=EVAL_REQUESTS_PATH_BACKEND) |
|
|
|
eval_requests = sort_models_by_priority(api=API, models=eval_requests) |
|
|
|
logger.info( |
|
f"Found {len(eval_requests)} {PENDING_STATUS} eval requests") |
|
|
|
if len(eval_requests) == 0: |
|
return |
|
|
|
eval_request = eval_requests[0] |
|
logger.info(pp.pformat(eval_request)) |
|
|
|
set_eval_request( |
|
api=API, |
|
eval_request=eval_request, |
|
set_to_status=RUNNING_STATUS, |
|
hf_repo=REQUESTS_REPO, |
|
local_dir=EVAL_REQUESTS_PATH_BACKEND, |
|
) |
|
|
|
logger.info( |
|
f'Starting Evaluation of {eval_request.json_filepath} on Inference endpoints') |
|
endpoint_name = _make_endpoint_name(eval_request) |
|
endpoint_url = create_endpoint(endpoint_name, eval_request.model) |
|
logger.info("Created an endpoint url at %s" % endpoint_url) |
|
results = compute_results(endpoint_url, eval_request) |
|
logger.info("FINISHED!") |
|
logger.info(results) |
|
logger.info(f'Completed Evaluation of {eval_request.json_filepath}') |
|
set_eval_request(api=API, |
|
eval_request=eval_request, |
|
set_to_status=FINISHED_STATUS, |
|
hf_repo=REQUESTS_REPO, |
|
local_dir=EVAL_REQUESTS_PATH_BACKEND, |
|
) |
|
|
|
delete_inference_endpoint(endpoint_name) |
|
|
|
|
|
def _make_endpoint_name(eval_request): |
|
model_repository = eval_request.model |
|
|
|
endpoint_name_tmp = re.sub("[/.]", "-", |
|
model_repository.lower()) + "-toxicity-eval" |
|
|
|
endpoint_name = endpoint_name_tmp[:32] |
|
return endpoint_name |
|
|
|
|
|
if __name__ == "__main__": |
|
run_auto_eval() |
|
|