import streamlit as st import pandas as pd from streamlit import cli as stcli from transformers import pipeline from sentence_transformers import SentenceTransformer, util import sys HISTORY_WEIGHT = 100 # set history weight (if found any keyword from history, it will priorities based on its weight) @st.cache(allow_output_mutation=True, suppress_st_warning=True) def get_model(model): return pipeline("fill-mask", model=model, top_k=10)#set the maximum of tokens to be retrieved after each inference to model def hash_func(inp): return True @st.cache(allow_output_mutation=True, suppress_st_warning=True) def loading_models(model='roberta-base'): return get_model(model), SentenceTransformer('all-MiniLM-L6-v2') @st.cache(allow_output_mutation=True, suppress_st_warning=True, hash_funcs={'tokenizers.Tokenizer': hash_func, 'tokenizers.AddedToken': hash_func}) def infer(text): # global nlp return nlp(text+' '+nlp.tokenizer.mask_token) @st.cache(allow_output_mutation=True, suppress_st_warning=True, hash_funcs={'tokenizers.Tokenizer': hash_func, 'tokenizers.AddedToken': hash_func}) def sim(predicted_seq, sem_list): return semantic_model.encode(predicted_seq, convert_to_tensor=True), \ semantic_model.encode(sem_list, convert_to_tensor=True) @st.cache(allow_output_mutation=True, suppress_st_warning=True, hash_funcs={'tokenizers.Tokenizer': hash_func, 'tokenizers.AddedToken': hash_func}) def main(text,semantic_text,history_keyword_text): global semantic_model, data_load_state data_load_state.text('Inference from model...') result = infer(text) sem_list=[semantic_text.strip()] data_load_state.text('Checking similarity...') if len(semantic_text): predicted_seq=[rec['sequence'] for rec in result] predicted_embeddings, semantic_history_embeddings = sim(predicted_seq, sem_list) cosine_scores = util.cos_sim(predicted_embeddings, semantic_history_embeddings) data_load_state.text('similarity check completed...') for index, r in enumerate(result): if len(semantic_text): if len(r['token_str'])>2: #skip spcial chars such as "?" result[index]['score']+=float(sum(cosine_scores[index]))*HISTORY_WEIGHT if r['token_str'].lower().strip() in history_keyword_text.lower().strip() and len(r['token_str'].lower().strip())>1: #found from history, then increase the score of tokens result[index]['score']*=HISTORY_WEIGHT data_load_state.text('Score updated...') #sort the results df=pd.DataFrame(result).sort_values(by='score', ascending=False) return df if __name__ == '__main__': if st._is_running_with_streamlit: st.markdown(""" # Auto-Complete This is an example of an auto-complete approach where the next token suggested based on users's history Keyword match & Semantic similarity of users's history (log). The next token is predicted per probability and a weight if it is appeared in keyword user's history or there is a similarity to semantic user's history """) history_keyword_text = st.text_input("Enter users's history (optional, i.e., 'Gates')", value="") semantic_text = st.text_input("Enter users's history (optional, i.e., 'Microsoft' or 'President')", value="Microsoft") text = st.text_input("Enter a text for auto completion...", value='Where is Bill') model = st.selectbox("Choose a model", ["roberta-base", "bert-base-uncased"]) data_load_state = st.text('1.Loading model ...') nlp, semantic_model = loading_models(model) df=main(text,semantic_text,history_keyword_text) #show the results as a table st.table(df) data_load_state.text('') else: sys.argv = ['streamlit', 'run', sys.argv[0]] sys.exit(stcli.main())