Spaces:
Runtime error
Runtime error
File size: 1,467 Bytes
cefd102 c0f6b9f cefd102 c0f6b9f 7dc45fe c0f6b9f cefd102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import os
import gradio as gr
import numpy as np
import tensorflow as tf
from tensorflow.keras import models
IMG_SIZE = 300
class_names = ['none','mild','severe']
cwd = os.getcwd()
outpath= os.path.join(cwd,"model")
model_name = 'cross_event_ecuador_haiti_efficientnet_fine_tuned_1644086357.h5'
loaded_model = models.load_model(os.path.join(outpath,model_name))
def _classifier(inp):
img = np.asarray(tf.cast(inp, dtype=tf.float32)) * 1 / 255.0
img = img.reshape((-1, IMG_SIZE, IMG_SIZE, 3))
preds = loaded_model.predict(img).flatten()
return {class_names[i]:float(preds[i]) for i in range(len(class_names))}
iface = gr.Interface(fn=_classifier,
title="Disaster damage assessment from social media image",
description="This simple app allow users to load an image and assess the extent of damage caused by an earthquake",
article="The severity of damage in an image is the extent of physical destruction shown in it. For this experiment we only consider three level of damages: severe damage,mild damage and no damage (none). The model was trained using data from Haiti,Ecuador,Nepal earthquakes and google images.",
examples=['Haiti-Gingerbread-2.jpg','building_damage_100.jpg','building_damage_424.jpg'],
inputs=gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE)),
outputs=gr.outputs.Label()
)
iface.launch() |