import gradio as gr import json def auto_anno(txt, types, radio, need_trans=False): if need_trans: txt = en2cn(txt) if radio == '文本分类': result = text_classification(txt, types) if radio == '实体抽取': result = extract_named_entities(txt, types) if need_trans: result = f'{txt}\n{result}' return result input1 = gr.Textbox(lines=3, label="输入原句") input2 = gr.Textbox(lines=3, label="输入类别") output = gr.Textbox(label="输出结果") radio = gr.Radio(["文本分类", "实体抽取"], label="算法类型") checkbox = gr.Checkbox(label="翻译成中文") # 读取数据 from utils.anno.cls.text_classification import text_classification from utils.anno.ner.entity_extract import extract_named_entities from utils.api.google_trans import en2cn if __name__ == '__main__': # # 多文本分类 # txts = open('data/cls/jd.csv', 'r', encoding='utf-8').read().split('\n')[1:] # txts = [txt.split(',')[0] for txt in txts if txt != ''] # results = [] # for txt in txts: # results.append(text_classification(txt, ['好评', '差评'])) demo = gr.Interface(fn=auto_anno, inputs=[input1, input2, radio, checkbox], outputs=[output]) demo.launch(share=True)