|
from dotenv import find_dotenv, load_dotenv |
|
from transformers import pipeline |
|
from transformers import AutoProcessor, AutoModel |
|
from langchain import PromptTemplate, LLMChain |
|
from langchain.llms import GooglePalm |
|
import scipy |
|
import streamlit as st |
|
|
|
load_dotenv(find_dotenv()) |
|
|
|
|
|
def img_2_text(url): |
|
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") |
|
|
|
text = image_to_text(url)[0]["generated_text"] |
|
return text |
|
|
|
|
|
|
|
def generate_story(scenario): |
|
template = """" |
|
You are a story teller; |
|
you can generate a creative fun story based on a sample narrative, the story should not be more than 100 words; |
|
CONTEXT: {scenario} |
|
STORY: |
|
""" |
|
|
|
prompt = PromptTemplate(template=template, |
|
input_variables=['scenario'] |
|
) |
|
llm = GooglePalm(temperature=0.7) |
|
|
|
story_llm = LLMChain(llm=llm, prompt=prompt, verbose=True) |
|
|
|
story = story_llm.predict(scenario=scenario) |
|
|
|
return story |
|
|
|
|
|
|
|
|
|
def text_to_speech(text): |
|
processor = AutoProcessor.from_pretrained("suno/bark-small") |
|
model = AutoModel.from_pretrained("suno/bark-small") |
|
|
|
inputs = processor( |
|
text=[text], |
|
return_tensors="pt", |
|
) |
|
|
|
speech_values = model.generate(**inputs, do_sample=True) |
|
sampling_rate = model.generation_config.sample_rate |
|
scipy.io.wavfile.write("audio.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze()) |
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title="img 2 audio story") |
|
st.header("turn image to audio story") |
|
uploaded_file = st.file_uploader("Choose an image ... ", type="jpg") |
|
|
|
if uploaded_file is not None: |
|
print(uploaded_file) |
|
bytes_data = uploaded_file.getvalue() |
|
with open(uploaded_file.name, "wb") as file: |
|
file.write(bytes_data) |
|
st.image(uploaded_file, caption="Uploaded image", use_column_width=True) |
|
text = img_2_text(uploaded_file.name) |
|
story = generate_story(text) |
|
text_to_speech(story) |
|
|
|
with st.expander("text"): |
|
st.write(text) |
|
with st.expander("story"): |
|
st.write(story) |
|
st.audio("audio.wav") |
|
|
|
|
|
main() |
|
|