Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
import hopsworks | |
# IDE Help | |
from hopsworks.core.dataset_api import DatasetApi | |
# Images | |
hopsworks_images_location = "Resources/images" | |
hopsworks_images = { | |
"latest_iris": | |
{ | |
"name": "latest_iris.png", | |
"local_path": "" | |
}, | |
"actual_iris": | |
{ | |
"name": "actual_iris.png", | |
"local_path": "" | |
}, | |
"df_recent": | |
{ | |
"name": "df_recent.png", | |
"local_path": "" | |
}, | |
"confusion_matrix": | |
{ | |
"name": "confusion_matrix.png", | |
"local_path": "" | |
} | |
} | |
print("Logging in to Hopsworks...") | |
project = hopsworks.login() | |
print("Getting feature store...") | |
fs = project.get_feature_store() | |
print("Get database handler from Hopsworks...") | |
dataset_api: DatasetApi = project.get_dataset_api() | |
for image in hopsworks_images: | |
print(f"Downloading {hopsworks_images[image]['name']} from Hopsworks...") | |
hopsworks_images[image]['local_path'] = dataset_api.download(f"{hopsworks_images_location}/{hopsworks_images[image]['name']}") | |
print(f"Saved in: {hopsworks_images[image]['local_path']}") | |
print("Configuring gradio...") | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
label1 = gr.Label("Today's Predicted Image") | |
image1 = gr.Image(hopsworks_images['latest_iris']['local_path'], | |
elem_id="predicted-img", type="pil") | |
with gr.Column(): | |
label2 = gr.Label("Today's Actual Image") | |
image2 = gr.Image(hopsworks_images['actual_iris']['local_path'], | |
elem_id="actual-img", type="pil") | |
with gr.Row(): | |
with gr.Column(): | |
label3 = gr.Label("Recent Prediction History") | |
image3 = gr.Image(hopsworks_images['df_recent']['local_path'], | |
elem_id="recent-predictions", type="pil") | |
with gr.Column(): | |
label4 = gr.Label("Confusion Matrix with Historical Prediction Performance") | |
image4 = gr.Image(hopsworks_images['confusion_matrix']['local_path'], | |
elem_id="confusion-matrix", type="pil") | |
print("Launching gradio...") | |
demo.launch(debug=True) | |