"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space.""" import ast import argparse import glob import pickle import gradio as gr import numpy as np import pandas as pd notebook_url = "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH#scrollTo=o_CpbkGEbhrK" basic_component_values = [None] * 6 leader_component_values = [None] * 5 def make_default_md(arena_df, elo_results): leaderboard_md = f""" # 🏆 | [GitHub](https://) """ return leaderboard_md def make_arena_leaderboard_md(arena_df): total_votes = sum(arena_df["num_battles"]) // 2 total_models = len(arena_df) leaderboard_md = f""" Last updated: April 9, 2024. Find more analysis in the [notebook]({notebook_url}). """ return leaderboard_md def make_full_leaderboard_md(elo_results): leaderboard_md = f""" enchmarks are displayed: """ return leaderboard_md def make_leaderboard_md_live(elo_results): leaderboard_md = f""" # Leaderboard Last updated: {elo_results["last_updated_datetime"]} {elo_results["leaderboard_table"]} """ return leaderboard_md def update_elo_components(max_num_files, elo_results_file): log_files = get_log_files(max_num_files) # Leaderboard if elo_results_file is None: # Do live update battles = clean_battle_data(log_files) elo_results = report_elo_analysis_results(battles) leader_component_values[0] = make_leaderboard_md_live(elo_results) leader_component_values[1] = elo_results["win_fraction_heatmap"] # Basic stats basic_stats = report_basic_stats(log_files) md0 = f"Last updated: {basic_stats['last_updated_datetime']}" md1 = "### Action Histogram\n" md1 += basic_stats["action_hist_md"] + "\n" basic_component_values[0] = md0 basic_component_values[1] = basic_stats["chat_dates_bar"] basic_component_values[2] = md1 def update_worker(max_num_files, interval, elo_results_file): while True: tic = time.time() update_elo_components(max_num_files, elo_results_file) durtaion = time.time() - tic print(f"update duration: {durtaion:.2f} s") time.sleep(max(interval - durtaion, 0)) def load_demo(url_params, request: gr.Request): logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") return basic_component_values + leader_component_values def model_hyperlink(model_name, link): return f'{model_name}' def load_leaderboard_table_csv(filename, add_hyperlink=True): lines = open(filename).readlines() heads = [v.strip() for v in lines[0].split(",")] rows = [] for i in range(1, len(lines)): row = [v.strip() for v in lines[i].split(",")] for j in range(len(heads)): item = {} for h, v in zip(heads, row): if h == "": if v != "-": v = int(ast.literal_eval(v)) else: v = np.nan item[h] = v if add_hyperlink: item["Model"] = model_hyperlink(item["Model"], item["Link"]) rows.append(item) return rows def build_basic_stats_tab(): empty = "Loading ..." basic_component_values[:] = [empty, None, empty, empty, empty, empty] md0 = gr.Markdown(empty) gr.Markdown("#### Figure 1:") plot_1 = gr.Plot(show_label=False) with gr.Row(): with gr.Column(): md1 = gr.Markdown(empty) with gr.Column(): md2 = gr.Markdown(empty) with gr.Row(): with gr.Column(): md3 = gr.Markdown(empty) with gr.Column(): md4 = gr.Markdown(empty) return [md0, plot_1, md1, md2, md3, md4] def get_full_table(arena_df, model_table_df): values = [] for i in range(len(model_table_df)): row = [] model_key = model_table_df.iloc[i]["key"] model_name = model_table_df.iloc[i]["Model"] # model display name row.append(model_name) if model_key in arena_df.index: idx = arena_df.index.get_loc(model_key) row.append(round(arena_df.iloc[idx]["rating"])) else: row.append(np.nan) # Organization row.append(model_table_df.iloc[i]["Organization"]) # license row.append(model_table_df.iloc[i]["License"]) values.append(row) values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9) return values def get_arena_table(arena_df, model_table_df): # sort by rating arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False]) values = [] for i in range(len(arena_df)): row = [] model_key = arena_df.index[i] model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[ 0 ] # rank ranking = arena_df.iloc[i].get("final_ranking") or i+1 row.append(ranking) # model display name row.append(model_name) # elo rating row.append(round(arena_df.iloc[i]["rating"])) upper_diff = round( arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"] ) lower_diff = round( arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"] ) row.append(f"+{upper_diff}/-{lower_diff}") # num battles row.append(round(arena_df.iloc[i]["num_battles"])) # Organization row.append( model_table_df[model_table_df["key"] == model_key]["Organization"].values[0] ) # license row.append( model_table_df[model_table_df["key"] == model_key]["License"].values[0] ) cutoff_date = model_table_df[model_table_df["key"] == model_key]["Knowledge cutoff date"].values[0] if cutoff_date == "-": row.append("Unknown") else: row.append(cutoff_date) values.append(row) return values def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False): if elo_results_file is None: # Do live update default_md = "Loading ..." p1 = p2 = p3 = p4 = None else: with open(elo_results_file, "rb") as fin: elo_results = pickle.load(fin) if "full" in elo_results: elo_results = elo_results["full"] arena_df = elo_results["leaderboard_table_df"] default_md = make_default_md(arena_df, elo_results) md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown") if leaderboard_table_file: data = load_leaderboard_table_csv(leaderboard_table_file) model_table_df = pd.DataFrame(data) with gr.Tabs() as tabs: # arena table arena_table_vals = get_arena_table(arena_df, model_table_df) with gr.Tab("Arena Elo", id=0): md = make_arena_leaderboard_md(arena_df) gr.Markdown(md, elem_id="leaderboard_markdown") gr.Dataframe( headers=[ "Rank", "🤖 Model", "Organization", "License", ], datatype=[ "str", "markdown", "str", "str", ], value=arena_table_vals, elem_id="arena_leaderboard_dataframe", height=700, column_widths=[50, 200, 120, 100, 100, 150, 150, 100], wrap=True, ) with gr.Tab("Full Leaderboard", id=1): md = make_full_leaderboard_md(elo_results) gr.Markdown(md, elem_id="leaderboard_markdown") full_table_vals = get_full_table(arena_df, model_table_df) gr.Dataframe( headers=[ "🤖 Model", "📚 MMLU", "Organization", "License", ], datatype=["markdown", "number", "str", "str"], value=full_table_vals, elem_id="full_leaderboard_dataframe", column_widths=[200, 100, 100, 100, 150, 150], height=700, wrap=True, ) if not show_plot: gr.Markdown( """ ## Visit our [HF space](https://huggingface.co/spaces/) for more analysis! """, elem_id="leaderboard_markdown", ) else: pass gr.Markdown( f""" """, elem_id="leaderboard_markdown" ) leader_component_values[:] = [default_md, p1, p2, p3, p4] if show_plot: gr.Markdown( f"""## More Statistics\n Below are figures for more statistics. The code for generating them is also included in this [notebook]({notebook_url}). """, elem_id="leaderboard_markdown" ) with gr.Row(): with gr.Column(): gr.Markdown( "#### Figure 1: " ) with gr.Column(): gr.Markdown( "#### Figure 2: " ) with gr.Accordion( "📝 Citation", open=True, ): citation_md = """ ### Citation """ gr.Markdown(citation_md, elem_id="leaderboard_markdown") gr.Markdown(acknowledgment_md) if show_plot: return [md_1, plot_1, plot_2, plot_3, plot_4] return [md_1] block_css = """ #notice_markdown { font-size: 104% } #notice_markdown th { display: none; } #notice_markdown td { padding-top: 6px; padding-bottom: 6px; } #leaderboard_markdown { font-size: 104% } #leaderboard_markdown td { padding-top: 6px; padding-bottom: 6px; } #leaderboard_dataframe td { line-height: 0.1em; } footer { display:none !important } .sponsor-image-about img { margin: 0 20px; margin-top: 20px; height: 40px; max-height: 100%; width: auto; float: left; } """ acknowledgment_md = """ ### Acknowledgment """ def build_demo(elo_results_file, leaderboard_table_file): text_size = gr.themes.sizes.text_lg with gr.Blocks( title="Leaderboard", theme=gr.themes.Base(text_size=text_size), css=block_css, ) as demo: leader_components = build_leaderboard_tab( elo_results_file, leaderboard_table_file, show_plot=True ) return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--share", action="store_true") args = parser.parse_args() elo_result_files = glob.glob("elo_results_*.pkl") elo_result_files.sort(key=lambda x: int(x[12:-4])) elo_result_file = elo_result_files[-1] leaderboard_table_files = glob.glob("leaderboard_table_*.csv") leaderboard_table_files.sort(key=lambda x: int(x[18:-4])) leaderboard_table_file = leaderboard_table_files[-1] demo = build_demo(elo_result_file, leaderboard_table_file) demo.launch(share=args.share)