Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
|
2 |
+
import ast
|
3 |
+
import argparse
|
4 |
+
import glob
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
notebook_url = "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH#scrollTo=o_CpbkGEbhrK"
|
12 |
+
|
13 |
+
|
14 |
+
basic_component_values = [None] * 6
|
15 |
+
leader_component_values = [None] * 5
|
16 |
+
|
17 |
+
|
18 |
+
def make_default_md(arena_df, elo_results):
|
19 |
+
|
20 |
+
leaderboard_md = f"""
|
21 |
+
# π
|
22 |
+
| [GitHub](https://)
|
23 |
+
"""
|
24 |
+
return leaderboard_md
|
25 |
+
|
26 |
+
|
27 |
+
def make_arena_leaderboard_md(arena_df):
|
28 |
+
total_votes = sum(arena_df["num_battles"]) // 2
|
29 |
+
total_models = len(arena_df)
|
30 |
+
|
31 |
+
leaderboard_md = f"""
|
32 |
+
Last updated: April 9, 2024.
|
33 |
+
Find more analysis in the [notebook]({notebook_url}).
|
34 |
+
"""
|
35 |
+
return leaderboard_md
|
36 |
+
|
37 |
+
|
38 |
+
def make_full_leaderboard_md(elo_results):
|
39 |
+
leaderboard_md = f"""
|
40 |
+
enchmarks are displayed:
|
41 |
+
"""
|
42 |
+
return leaderboard_md
|
43 |
+
|
44 |
+
|
45 |
+
def make_leaderboard_md_live(elo_results):
|
46 |
+
leaderboard_md = f"""
|
47 |
+
# Leaderboard
|
48 |
+
Last updated: {elo_results["last_updated_datetime"]}
|
49 |
+
{elo_results["leaderboard_table"]}
|
50 |
+
"""
|
51 |
+
return leaderboard_md
|
52 |
+
|
53 |
+
|
54 |
+
def update_elo_components(max_num_files, elo_results_file):
|
55 |
+
log_files = get_log_files(max_num_files)
|
56 |
+
|
57 |
+
# Leaderboard
|
58 |
+
if elo_results_file is None: # Do live update
|
59 |
+
battles = clean_battle_data(log_files)
|
60 |
+
elo_results = report_elo_analysis_results(battles)
|
61 |
+
|
62 |
+
leader_component_values[0] = make_leaderboard_md_live(elo_results)
|
63 |
+
leader_component_values[1] = elo_results["win_fraction_heatmap"]
|
64 |
+
|
65 |
+
# Basic stats
|
66 |
+
basic_stats = report_basic_stats(log_files)
|
67 |
+
md0 = f"Last updated: {basic_stats['last_updated_datetime']}"
|
68 |
+
|
69 |
+
md1 = "### Action Histogram\n"
|
70 |
+
md1 += basic_stats["action_hist_md"] + "\n"
|
71 |
+
|
72 |
+
basic_component_values[0] = md0
|
73 |
+
basic_component_values[1] = basic_stats["chat_dates_bar"]
|
74 |
+
basic_component_values[2] = md1]
|
75 |
+
|
76 |
+
|
77 |
+
def update_worker(max_num_files, interval, elo_results_file):
|
78 |
+
while True:
|
79 |
+
tic = time.time()
|
80 |
+
update_elo_components(max_num_files, elo_results_file)
|
81 |
+
durtaion = time.time() - tic
|
82 |
+
print(f"update duration: {durtaion:.2f} s")
|
83 |
+
time.sleep(max(interval - durtaion, 0))
|
84 |
+
|
85 |
+
|
86 |
+
def load_demo(url_params, request: gr.Request):
|
87 |
+
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
|
88 |
+
return basic_component_values + leader_component_values
|
89 |
+
|
90 |
+
|
91 |
+
def model_hyperlink(model_name, link):
|
92 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
93 |
+
|
94 |
+
|
95 |
+
def load_leaderboard_table_csv(filename, add_hyperlink=True):
|
96 |
+
lines = open(filename).readlines()
|
97 |
+
heads = [v.strip() for v in lines[0].split(",")]
|
98 |
+
rows = []
|
99 |
+
for i in range(1, len(lines)):
|
100 |
+
row = [v.strip() for v in lines[i].split(",")]
|
101 |
+
for j in range(len(heads)):
|
102 |
+
item = {}
|
103 |
+
for h, v in zip(heads, row):
|
104 |
+
if h == "":
|
105 |
+
if v != "-":
|
106 |
+
v = int(ast.literal_eval(v))
|
107 |
+
else:
|
108 |
+
v = np.nan
|
109 |
+
item[h] = v
|
110 |
+
if add_hyperlink:
|
111 |
+
item["Model"] = model_hyperlink(item["Model"], item["Link"])
|
112 |
+
rows.append(item)
|
113 |
+
|
114 |
+
return rows
|
115 |
+
|
116 |
+
|
117 |
+
def build_basic_stats_tab():
|
118 |
+
empty = "Loading ..."
|
119 |
+
basic_component_values[:] = [empty, None, empty, empty, empty, empty]
|
120 |
+
|
121 |
+
md0 = gr.Markdown(empty)
|
122 |
+
gr.Markdown("#### Figure 1:")
|
123 |
+
plot_1 = gr.Plot(show_label=False)
|
124 |
+
with gr.Row():
|
125 |
+
with gr.Column():
|
126 |
+
md1 = gr.Markdown(empty)
|
127 |
+
with gr.Column():
|
128 |
+
md2 = gr.Markdown(empty)
|
129 |
+
with gr.Row():
|
130 |
+
with gr.Column():
|
131 |
+
md3 = gr.Markdown(empty)
|
132 |
+
with gr.Column():
|
133 |
+
md4 = gr.Markdown(empty)
|
134 |
+
return [md0, plot_1, md1, md2, md3, md4]
|
135 |
+
|
136 |
+
def get_full_table(arena_df, model_table_df):
|
137 |
+
values = []
|
138 |
+
for i in range(len(model_table_df)):
|
139 |
+
row = []
|
140 |
+
model_key = model_table_df.iloc[i]["key"]
|
141 |
+
model_name = model_table_df.iloc[i]["Model"]
|
142 |
+
# model display name
|
143 |
+
row.append(model_name)
|
144 |
+
if model_key in arena_df.index:
|
145 |
+
idx = arena_df.index.get_loc(model_key)
|
146 |
+
row.append(round(arena_df.iloc[idx]["rating"]))
|
147 |
+
else:
|
148 |
+
row.append(np.nan)
|
149 |
+
# Organization
|
150 |
+
row.append(model_table_df.iloc[i]["Organization"])
|
151 |
+
# license
|
152 |
+
row.append(model_table_df.iloc[i]["License"])
|
153 |
+
|
154 |
+
values.append(row)
|
155 |
+
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
|
156 |
+
return values
|
157 |
+
|
158 |
+
|
159 |
+
def get_arena_table(arena_df, model_table_df):
|
160 |
+
# sort by rating
|
161 |
+
arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
|
162 |
+
values = []
|
163 |
+
for i in range(len(arena_df)):
|
164 |
+
row = []
|
165 |
+
model_key = arena_df.index[i]
|
166 |
+
model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
|
167 |
+
0
|
168 |
+
]
|
169 |
+
|
170 |
+
# rank
|
171 |
+
ranking = arena_df.iloc[i].get("final_ranking") or i+1
|
172 |
+
row.append(ranking)
|
173 |
+
# model display name
|
174 |
+
row.append(model_name)
|
175 |
+
# elo rating
|
176 |
+
row.append(round(arena_df.iloc[i]["rating"]))
|
177 |
+
upper_diff = round(
|
178 |
+
arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
|
179 |
+
)
|
180 |
+
lower_diff = round(
|
181 |
+
arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
|
182 |
+
)
|
183 |
+
row.append(f"+{upper_diff}/-{lower_diff}")
|
184 |
+
# num battles
|
185 |
+
row.append(round(arena_df.iloc[i]["num_battles"]))
|
186 |
+
# Organization
|
187 |
+
row.append(
|
188 |
+
model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
|
189 |
+
)
|
190 |
+
# license
|
191 |
+
row.append(
|
192 |
+
model_table_df[model_table_df["key"] == model_key]["License"].values[0]
|
193 |
+
)
|
194 |
+
|
195 |
+
cutoff_date = model_table_df[model_table_df["key"] == model_key]["Knowledge cutoff date"].values[0]
|
196 |
+
if cutoff_date == "-":
|
197 |
+
row.append("Unknown")
|
198 |
+
else:
|
199 |
+
row.append(cutoff_date)
|
200 |
+
values.append(row)
|
201 |
+
return values
|
202 |
+
|
203 |
+
def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False):
|
204 |
+
if elo_results_file is None: # Do live update
|
205 |
+
default_md = "Loading ..."
|
206 |
+
p1 = p2 = p3 = p4 = None
|
207 |
+
else:
|
208 |
+
with open(elo_results_file, "rb") as fin:
|
209 |
+
elo_results = pickle.load(fin)
|
210 |
+
if "full" in elo_results:
|
211 |
+
elo_results = elo_results["full"]
|
212 |
+
|
213 |
+
arena_df = elo_results["leaderboard_table_df"]
|
214 |
+
default_md = make_default_md(arena_df, elo_results)
|
215 |
+
|
216 |
+
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
|
217 |
+
if leaderboard_table_file:
|
218 |
+
data = load_leaderboard_table_csv(leaderboard_table_file)
|
219 |
+
model_table_df = pd.DataFrame(data)
|
220 |
+
|
221 |
+
with gr.Tabs() as tabs:
|
222 |
+
# arena table
|
223 |
+
arena_table_vals = get_arena_table(arena_df, model_table_df)
|
224 |
+
with gr.Tab("Arena Elo", id=0):
|
225 |
+
md = make_arena_leaderboard_md(arena_df)
|
226 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
227 |
+
gr.Dataframe(
|
228 |
+
headers=[
|
229 |
+
"Rank",
|
230 |
+
"π€ Model",
|
231 |
+
"Organization",
|
232 |
+
"License",
|
233 |
+
],
|
234 |
+
datatype=[
|
235 |
+
"str",
|
236 |
+
"markdown",
|
237 |
+
"str",
|
238 |
+
"str",
|
239 |
+
],
|
240 |
+
value=arena_table_vals,
|
241 |
+
elem_id="arena_leaderboard_dataframe",
|
242 |
+
height=700,
|
243 |
+
column_widths=[50, 200, 120, 100, 100, 150, 150, 100],
|
244 |
+
wrap=True,
|
245 |
+
)
|
246 |
+
with gr.Tab("Full Leaderboard", id=1):
|
247 |
+
md = make_full_leaderboard_md(elo_results)
|
248 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
249 |
+
full_table_vals = get_full_table(arena_df, model_table_df)
|
250 |
+
gr.Dataframe(
|
251 |
+
headers=[
|
252 |
+
"π€ Model",
|
253 |
+
"π MMLU",
|
254 |
+
"Organization",
|
255 |
+
"License",
|
256 |
+
],
|
257 |
+
datatype=["markdown", "number", "str", "str"],
|
258 |
+
value=full_table_vals,
|
259 |
+
elem_id="full_leaderboard_dataframe",
|
260 |
+
column_widths=[200, 100, 100, 100, 150, 150],
|
261 |
+
height=700,
|
262 |
+
wrap=True,
|
263 |
+
)
|
264 |
+
if not show_plot:
|
265 |
+
gr.Markdown(
|
266 |
+
""" ## Visit our [HF space](https://huggingface.co/spaces/) for more analysis!
|
267 |
+
""",
|
268 |
+
elem_id="leaderboard_markdown",
|
269 |
+
)
|
270 |
+
else:
|
271 |
+
pass
|
272 |
+
|
273 |
+
gr.Markdown(
|
274 |
+
f"""
|
275 |
+
""",
|
276 |
+
elem_id="leaderboard_markdown"
|
277 |
+
)
|
278 |
+
|
279 |
+
leader_component_values[:] = [default_md, p1, p2, p3, p4]
|
280 |
+
|
281 |
+
if show_plot:
|
282 |
+
gr.Markdown(
|
283 |
+
f"""## More Statistics\n
|
284 |
+
Below are figures for more statistics. The code for generating them is also included in this [notebook]({notebook_url}).
|
285 |
+
""",
|
286 |
+
elem_id="leaderboard_markdown"
|
287 |
+
)
|
288 |
+
with gr.Row():
|
289 |
+
with gr.Column():
|
290 |
+
gr.Markdown(
|
291 |
+
"#### Figure 1: "
|
292 |
+
)
|
293 |
+
with gr.Column():
|
294 |
+
gr.Markdown(
|
295 |
+
"#### Figure 2: "
|
296 |
+
)
|
297 |
+
|
298 |
+
with gr.Accordion(
|
299 |
+
"π Citation",
|
300 |
+
open=True,
|
301 |
+
):
|
302 |
+
citation_md = """
|
303 |
+
### Citation
|
304 |
+
"""
|
305 |
+
gr.Markdown(citation_md, elem_id="leaderboard_markdown")
|
306 |
+
gr.Markdown(acknowledgment_md)
|
307 |
+
|
308 |
+
if show_plot:
|
309 |
+
return [md_1, plot_1, plot_2, plot_3, plot_4]
|
310 |
+
return [md_1]
|
311 |
+
|
312 |
+
block_css = """
|
313 |
+
#notice_markdown {
|
314 |
+
font-size: 104%
|
315 |
+
}
|
316 |
+
#notice_markdown th {
|
317 |
+
display: none;
|
318 |
+
}
|
319 |
+
#notice_markdown td {
|
320 |
+
padding-top: 6px;
|
321 |
+
padding-bottom: 6px;
|
322 |
+
}
|
323 |
+
#leaderboard_markdown {
|
324 |
+
font-size: 104%
|
325 |
+
}
|
326 |
+
#leaderboard_markdown td {
|
327 |
+
padding-top: 6px;
|
328 |
+
padding-bottom: 6px;
|
329 |
+
}
|
330 |
+
#leaderboard_dataframe td {
|
331 |
+
line-height: 0.1em;
|
332 |
+
}
|
333 |
+
footer {
|
334 |
+
display:none !important
|
335 |
+
}
|
336 |
+
.sponsor-image-about img {
|
337 |
+
margin: 0 20px;
|
338 |
+
margin-top: 20px;
|
339 |
+
height: 40px;
|
340 |
+
max-height: 100%;
|
341 |
+
width: auto;
|
342 |
+
float: left;
|
343 |
+
}
|
344 |
+
"""
|
345 |
+
|
346 |
+
acknowledgment_md = """
|
347 |
+
### Acknowledgment
|
348 |
+
"""
|
349 |
+
|
350 |
+
def build_demo(elo_results_file, leaderboard_table_file):
|
351 |
+
text_size = gr.themes.sizes.text_lg
|
352 |
+
|
353 |
+
with gr.Blocks(
|
354 |
+
title="Leaderboard",
|
355 |
+
theme=gr.themes.Base(text_size=text_size),
|
356 |
+
css=block_css,
|
357 |
+
) as demo:
|
358 |
+
leader_components = build_leaderboard_tab(
|
359 |
+
elo_results_file, leaderboard_table_file, show_plot=True
|
360 |
+
)
|
361 |
+
return demo
|
362 |
+
|
363 |
+
|
364 |
+
if __name__ == "__main__":
|
365 |
+
parser = argparse.ArgumentParser()
|
366 |
+
parser.add_argument("--share", action="store_true")
|
367 |
+
args = parser.parse_args()
|
368 |
+
|
369 |
+
elo_result_files = glob.glob("elo_results_*.pkl")
|
370 |
+
elo_result_files.sort(key=lambda x: int(x[12:-4]))
|
371 |
+
elo_result_file = elo_result_files[-1]
|
372 |
+
|
373 |
+
leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
|
374 |
+
leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
|
375 |
+
leaderboard_table_file = leaderboard_table_files[-1]
|
376 |
+
|
377 |
+
demo = build_demo(elo_result_file, leaderboard_table_file)
|
378 |
+
demo.launch(share=args.share)
|