import spaces import gradio as gr import torch import modin.pandas as pd import numpy as np from diffusers import DiffusionPipeline, DPMSolverSinglestepScheduler, ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL import requests import cv2 from uuid import uuid4 import numpy as np from PIL import Image controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16).to("cuda") pipe = StableDiffusionXLControlNetPipeline.from_pretrained("mann-e/Mann-E_Dreams", controlnet=controlnet, torch_dtype=torch.float16).to("cuda") pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True) #pipe.enable_xformers_memory_efficient_attention() pipe.enable_vae_slicing() torch.cuda.empty_cache() @spaces.GPU def genie (input_image, prompt, negative_prompt, width, height, steps, seed, conditioning_scale): #processing the input image res = requests.get(input_image) image_name = f'tmp_{uuid4()}.png' if res.ok: with open(image_name, 'wb') as f: f.write(res.content) # Canny Edge Detection image = cv2.imread(image_name) image = np.array(image) image = cv2.Canny(image, 100, 200) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) #cv2.imwrite('canny.png', image) image = Image.fromarray(image) #generating a new image generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) int_image = pipe(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, generator=generator, num_inference_steps=steps, guidance_scale=4, image=image, controlnet_conditioning_scale=conditioning_scale).images[0] return int_image gr.Interface(fn=genie, inputs=[gr.Textbox(label='Base Image URL'), gr.Textbox(label='What you want the AI to generate. 75 Token Limit.'), gr.Textbox(label='What you DO NOT want the AI to generate. 75 Token Limit.'), gr.Slider(576, maximum=1280, value=768, step=16, label='Width (can go up to 1280, but for square images maximum is 1024x1024)'), gr.Slider(576, maximum=1280, value=768, step=16, label='Height (can go up to 1280, but for square images maximum is 1024x1024)'), gr.Slider(1, maximum=8, value=6, step=1, label='Number of Iterations'), gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=True, label="Seed"), gr.Slider(minimum=0, step=0.05, maximum=1, label="Conditioning Scale"), ], outputs='image', title="Mann-E Dreams w/ ControlNet", description="Mann-E Dreams

WARNING: This model is capable of producing NSFW (Softcore) images.

In case you don't want a base image, just paste link to an image and put conditioning scale to 0", article = "").launch(debug=True, max_threads=80, show_error=True)