Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
import modin.pandas as pd | |
import numpy as np | |
from diffusers import DiffusionPipeline, DPMSolverSinglestepScheduler, ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
import requests | |
import cv2 | |
from uuid import uuid4 | |
import numpy as np | |
from PIL import Image | |
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16).to("cuda") | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("mann-e/Mann-E_Dreams", controlnet=controlnet, torch_dtype=torch.float16).to("cuda") | |
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True) | |
#pipe.enable_xformers_memory_efficient_attention() | |
pipe.enable_vae_slicing() | |
torch.cuda.empty_cache() | |
def genie (input_image, prompt, negative_prompt, width, height, steps, seed, conditioning_scale): | |
#processing the input image | |
res = requests.get(input_image) | |
image_name = f'tmp_{uuid4()}.png' | |
if res.ok: | |
with open(image_name, 'wb') as f: | |
f.write(res.content) | |
# Canny Edge Detection | |
image = cv2.imread(image_name) | |
image = np.array(image) | |
image = cv2.Canny(image, 100, 200) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
#cv2.imwrite('canny.png', image) | |
image = Image.fromarray(image) | |
#generating a new image | |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) | |
int_image = pipe(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, generator=generator, num_inference_steps=steps, guidance_scale=5.0, image=image, controlnet_conditioning_scale=conditioning_scale).images[0] | |
return int_image | |
gr.Interface(fn=genie, inputs=[gr.Textbox(label='Base Image URL'), | |
gr.Textbox(label='What you want the AI to generate. 75 Token Limit.'), | |
gr.Textbox(label='What you DO NOT want the AI to generate. 75 Token Limit.'), | |
gr.Slider(576, maximum=1280, value=768, step=16, label='Width (can go up to 1280, but for square images maximum is 1024x1024)'), | |
gr.Slider(576, maximum=1280, value=768, step=16, label='Height (can go up to 1280, but for square images maximum is 1024x1024)'), | |
gr.Slider(1, maximum=8, value=6, step=1, label='Number of Iterations'), | |
gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=True, label="Seed"), | |
gr.Slider(minimum=0, step=0.05, maximum=1, label="Conditioning Scale"), | |
], | |
outputs='image', | |
title="Mann-E Dreams w/ ControlNet", | |
description="Mann-E Dreams <br><br><b>WARNING: This model is capable of producing NSFW (Softcore) images.</b><br><br>In case you don't want a base image, just paste link to an image and put conditioning scale to 0", | |
article = "").launch(debug=True, max_threads=80, show_error=True) | |